TU Darmstadt / ULB / TUbiblio

Some Recent Results on MDGKN-Systems

Hagedorn, P. ; Heffel, Eduard ; Lancaster, P. ; Müller, P. C. ; Kapuria, S. (2013)
Some Recent Results on MDGKN-Systems.
In: Zeitschrift für Angewandte Mathematik und Mechanik - ZAMM
doi: 10.1002/zamm.201300270
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The linearized equations of motion of finite dimensional autonomous mechanical systems are normally written as a second order system and are of the MDGKN type, where the different n × n matrices have certain characteristic properties. These matrix properties have consequences for the underlying eigenvalue problem. Engineers have developed a good intuitive understanding of such systems, particularly for systems without gyroscopic terms (G-matrix) and circulatory terms (N-matrix, which may lead to self-excited vibrations). A number of important engineering problems in the linearized form are described by this type of equations. It has been known for a long time, that damping (D-matrix) in such systems may either stabilize or destabilize the system depending on the structure of the matrices. Here we present some new results (using a variety of methods of proof) on the influence of the damping terms, which are quite general. Starting from a number of conjectures, they were jointly developed by the authors during recent months.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Hagedorn, P. ; Heffel, Eduard ; Lancaster, P. ; Müller, P. C. ; Kapuria, S.
Art des Eintrags: Bibliographie
Titel: Some Recent Results on MDGKN-Systems
Sprache: Englisch
Publikationsjahr: 2013
Verlag: WILEY-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Zeitschrift für Angewandte Mathematik und Mechanik - ZAMM
DOI: 10.1002/zamm.201300270
Kurzbeschreibung (Abstract):

The linearized equations of motion of finite dimensional autonomous mechanical systems are normally written as a second order system and are of the MDGKN type, where the different n × n matrices have certain characteristic properties. These matrix properties have consequences for the underlying eigenvalue problem. Engineers have developed a good intuitive understanding of such systems, particularly for systems without gyroscopic terms (G-matrix) and circulatory terms (N-matrix, which may lead to self-excited vibrations). A number of important engineering problems in the linearized form are described by this type of equations. It has been known for a long time, that damping (D-matrix) in such systems may either stabilize or destabilize the system depending on the structure of the matrices. Here we present some new results (using a variety of methods of proof) on the influence of the damping terms, which are quite general. Starting from a number of conjectures, they were jointly developed by the authors during recent months.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Dynamik und Schwingungen
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Zentrale Einrichtungen
Hinterlegungsdatum: 02 Jun 2014 13:53
Letzte Änderung: 03 Jun 2018 21:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

  • Some Recent Results on MDGKN-Systems. (deposited 02 Jun 2014 13:53) [Gegenwärtig angezeigt]
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen