Kaspar, Jan ; Terzioglu, Caglar ; Ionescu, Emanuel ; Graczyk-Zajac, Magdalena ; Hapis, Stefania ; Kleebe, Hans-Joachim ; Riedel, Ralf (2014)
Stable SiOC/Sn Nanocomposite Anodes for Lithium-Ion Batteries with Outstanding Cycling Stability.
In: Advanced Functional Materials, 24 (26)
doi: 10.1002/adfm.201303828
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Silicon oxycarbide/tin nanocomposites (SiOC/Sn) are prepared by chemical modification of polysilsesquioxane Wacker-Belsil PMS MK (SiOCMK) and polysiloxane Polyramic RD-684a (SiOCRD) with tin(II)acetate and subsequent pyrolysis at 1000 °C. The obtained samples consist of an amorphous SiOC matrix and in-situ formed metallic Sn precipitates. Galvanostatic cycling of both composites demonstrate a first cycle reversible capacity of 566 mAhg−1 for SiOCMK/Sn and 651 mAhg−1 for SiOCRD/Sn. The superior cycling stability and rate capability of SiOCRD/Sn as compared to SiOCMK/Sn is attributed to the soft, carbon-rich SiOC matrix derived from the RD-684a polymer, which accommodates the Sn-related volume changes during Li-uptake and release. The poor cycling stability found for SiOCMK/Sn relates to mechanical failure of the rather stiff and fragile, carbon-poor matrix produced from PMS MK. Incremental capacity measurements outline different final Li–Sn alloy stages, depending on the matrix. For SiOCRD/Sn, alloying up to Li7Sn2 is registered, whereas for SiOCMK/Sn Li22Sn5 stoichiometry is reached. The suppression of Li22Sn5 phase in SiOCRD/Sn is rationalized by an expansion restriction of the matrix and thus prevention of a higher Li content in the alloy. For SiOCMK/Sn on the contrary, the matrix severely ruptures, providing an unlimited free volume for expansion and thus formation of Li22Sn5 phase.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2014 |
Autor(en): | Kaspar, Jan ; Terzioglu, Caglar ; Ionescu, Emanuel ; Graczyk-Zajac, Magdalena ; Hapis, Stefania ; Kleebe, Hans-Joachim ; Riedel, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Stable SiOC/Sn Nanocomposite Anodes for Lithium-Ion Batteries with Outstanding Cycling Stability |
Sprache: | Englisch |
Publikationsjahr: | 9 Juli 2014 |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Functional Materials |
Jahrgang/Volume einer Zeitschrift: | 24 |
(Heft-)Nummer: | 26 |
DOI: | 10.1002/adfm.201303828 |
URL / URN: | https://onlinelibrary.wiley.com/doi/10.1002/adfm.201303828 |
Kurzbeschreibung (Abstract): | Silicon oxycarbide/tin nanocomposites (SiOC/Sn) are prepared by chemical modification of polysilsesquioxane Wacker-Belsil PMS MK (SiOCMK) and polysiloxane Polyramic RD-684a (SiOCRD) with tin(II)acetate and subsequent pyrolysis at 1000 °C. The obtained samples consist of an amorphous SiOC matrix and in-situ formed metallic Sn precipitates. Galvanostatic cycling of both composites demonstrate a first cycle reversible capacity of 566 mAhg−1 for SiOCMK/Sn and 651 mAhg−1 for SiOCRD/Sn. The superior cycling stability and rate capability of SiOCRD/Sn as compared to SiOCMK/Sn is attributed to the soft, carbon-rich SiOC matrix derived from the RD-684a polymer, which accommodates the Sn-related volume changes during Li-uptake and release. The poor cycling stability found for SiOCMK/Sn relates to mechanical failure of the rather stiff and fragile, carbon-poor matrix produced from PMS MK. Incremental capacity measurements outline different final Li–Sn alloy stages, depending on the matrix. For SiOCRD/Sn, alloying up to Li7Sn2 is registered, whereas for SiOCMK/Sn Li22Sn5 stoichiometry is reached. The suppression of Li22Sn5 phase in SiOCRD/Sn is rationalized by an expansion restriction of the matrix and thus prevention of a higher Li content in the alloy. For SiOCMK/Sn on the contrary, the matrix severely ruptures, providing an unlimited free volume for expansion and thus formation of Li22Sn5 phase. |
Freie Schlagworte: | Li-ion batteries, silicon oxycarbide, tin, nanocomposites, anode materials |
Zusätzliche Informationen: | SFB 595 cooperation A4, B3 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche Zentrale Einrichtungen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A4: Neue Funktionskeramiken durch Anionensubstitution in oxidischen Systemen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung > Teilprojekt B3: Strukturelle Untersuchungen zur Aufklärung der elektrischen Ermüdung in PZT |
Hinterlegungsdatum: | 15 Jul 2014 08:16 |
Letzte Änderung: | 13 Aug 2021 11:55 |
PPN: | |
Sponsoren: | This work was finanicially supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany within SPP1473/JP8, SPP1181 and SFB595 programs.. |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |