TU Darmstadt / ULB / TUbiblio

Reversible Magnetic Field Induced Strain in Ni2MnGa-Polymer-Composites

Kauffmann-Weiss, Sandra ; Scheerbaum, Nils ; Liu, Jian ; Klauss, Hansjörg ; Schultz, Ludwig ; Mäder, Edith ; Häßler, Rüdiger ; Heinrich, Gert ; Gutfleisch, Oliver (2012)
Reversible Magnetic Field Induced Strain in Ni2MnGa-Polymer-Composites.
In: Advanced Engineering Materials, 14 (1-2)
doi: 10.1002/adem.201100128
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Composite materials consisting of magnetic shape memory alloy particles and a polymer matrix combine the advantages of both material classes: the high achievable magnetic field induced strain (MFIS) of 6% of Ni-Mn-Ga with a ductile matrix. Engineering the particle-matrix interface as well as matching stiffness of polymer matrix is of importance for achieving high reversible MFIS to use this material as actuator or damper. We investigated those properties for Ni50.9Mn27.1Ga22.0 and Ni50.3Mn24.6Ga25.1 polymer composites. Particles were produced by gently crushing melt-extracted and subsequently annealed fibres. At room temperature, the Ni50.9Mn27.1Ga22.0 particles exhibit a 5M martensitic structure, while the Ni50.3Mn24.6Ga25.1 particles are austenitic. These particles were embedded into the polymer, either a stiff epoxy resin or a soft polyurethane. In response to an external applied magnetic field, the particles tend to relocate within the polyurethane due to its very low Young's modulus and magnetostatic interaction between particles. Slightly stiffer polymer matrices are advantageous for achieving controllable MFIS. In Ni50.9Mn27.1Ga22.0 epoxy composites, a MFIS of 0.1% was observed and was resettable by rotating the magnetic field by 90°. Furthermore, single fibre pull-out tests indicated significant improvements of the interfacial properties when using silane coupling agent treated fibres.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Kauffmann-Weiss, Sandra ; Scheerbaum, Nils ; Liu, Jian ; Klauss, Hansjörg ; Schultz, Ludwig ; Mäder, Edith ; Häßler, Rüdiger ; Heinrich, Gert ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Reversible Magnetic Field Induced Strain in Ni2MnGa-Polymer-Composites
Sprache: Englisch
Publikationsjahr: Februar 2012
Verlag: Wiley-VCH Verlag GmbH & Co. KGaA
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 1-2
DOI: 10.1002/adem.201100128
Kurzbeschreibung (Abstract):

Composite materials consisting of magnetic shape memory alloy particles and a polymer matrix combine the advantages of both material classes: the high achievable magnetic field induced strain (MFIS) of 6% of Ni-Mn-Ga with a ductile matrix. Engineering the particle-matrix interface as well as matching stiffness of polymer matrix is of importance for achieving high reversible MFIS to use this material as actuator or damper. We investigated those properties for Ni50.9Mn27.1Ga22.0 and Ni50.3Mn24.6Ga25.1 polymer composites. Particles were produced by gently crushing melt-extracted and subsequently annealed fibres. At room temperature, the Ni50.9Mn27.1Ga22.0 particles exhibit a 5M martensitic structure, while the Ni50.3Mn24.6Ga25.1 particles are austenitic. These particles were embedded into the polymer, either a stiff epoxy resin or a soft polyurethane. In response to an external applied magnetic field, the particles tend to relocate within the polyurethane due to its very low Young's modulus and magnetostatic interaction between particles. Slightly stiffer polymer matrices are advantageous for achieving controllable MFIS. In Ni50.9Mn27.1Ga22.0 epoxy composites, a MFIS of 0.1% was observed and was resettable by rotating the magnetic field by 90°. Furthermore, single fibre pull-out tests indicated significant improvements of the interfacial properties when using silane coupling agent treated fibres.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 19 Mai 2014 12:25
Letzte Änderung: 19 Mai 2014 12:25
PPN:
Sponsoren: This work is supported by DFG SPP 1239.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen