TU Darmstadt / ULB / TUbiblio

Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells

Witte, Wolfram ; Abou-Ras, Daniel ; Albe, Karsten ; Bauer, Gottfried H. ; Bertram, Frank ; Boit, Christian ; Brüggemann, Rudolf ; Christen, Jürgen ; Dietrich, Jens ; Eicke, Axel ; Hariskos, Dimitrios ; Maiberg, Matthias ; Mainz, Roland ; Meessen, Max ; Müller, Mathias ; Neumann, Oliver ; Orgis, Thomas ; Paetel, Stefan ; Pohl, Johan ; Rodriguez-Alvarez, Humberto ; Scheer, Roland ; Schock, Hans-Werner ; Unold, Thomas ; Weber, Alfons ; Powalla, Michael (2015)
Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells.
In: Progress in Photovoltaics: Research and Applications, 23
doi: 10.1002/pip.2485
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The gallium gradient in Cu(In,Ga)Se2 (CIGS) layers, which forms during the two industrially relevant deposition routes, the sequential and co-evaporation processes, plays a key role in the device performance of CIGS thin-film modules. In this contribution, we present a comprehensive study on the formation, nature, and consequences of gallium gradients in CIGS solar cells. The formation of gallium gradients is analyzed in real time during a rapid selenization process by in situ X-ray measurements. In addition, the gallium grading of a CIGS layer grown with an in-line coevaporation process is analyzed by means of depth profiling with mass spectrometry. This gallium gradient of a real solar cell served as input data for device simulations. Depth-dependent occurrence of lateral inhomogeneities on the μm scale in CIGS deposited by the co-evaporation process was investigated by highly spatially resolved luminescence measurements on etched CIGS samples, which revealed a dependence of the optical bandgap, the quasi-Fermi level splitting, transition levels, and the vertical gallium gradient. Transmission electron microscopy analyses of CIGS cross-sections point to a difference in gallium content in the near surface region of neighboring grains. Migration barriers for a copper-vacancy-mediated indium and gallium diffusion in CuInSe2 and CuGaSe2 were calculated using density functional theory. The migration barrier for the InCu antisite in CuGaSe2 is significantly lower compared with the GaCu antisite in CuInSe2, which is in accordance with the experimentally observed Ga gradients in CIGS layers grown by co-evaporation and selenization processes.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Witte, Wolfram ; Abou-Ras, Daniel ; Albe, Karsten ; Bauer, Gottfried H. ; Bertram, Frank ; Boit, Christian ; Brüggemann, Rudolf ; Christen, Jürgen ; Dietrich, Jens ; Eicke, Axel ; Hariskos, Dimitrios ; Maiberg, Matthias ; Mainz, Roland ; Meessen, Max ; Müller, Mathias ; Neumann, Oliver ; Orgis, Thomas ; Paetel, Stefan ; Pohl, Johan ; Rodriguez-Alvarez, Humberto ; Scheer, Roland ; Schock, Hans-Werner ; Unold, Thomas ; Weber, Alfons ; Powalla, Michael
Art des Eintrags: Bibliographie
Titel: Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells
Sprache: Englisch
Publikationsjahr: 2015
Verlag: John Wiley & Sons, Ltd
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Progress in Photovoltaics: Research and Applications
Jahrgang/Volume einer Zeitschrift: 23
DOI: 10.1002/pip.2485
Zugehörige Links:
Kurzbeschreibung (Abstract):

The gallium gradient in Cu(In,Ga)Se2 (CIGS) layers, which forms during the two industrially relevant deposition routes, the sequential and co-evaporation processes, plays a key role in the device performance of CIGS thin-film modules. In this contribution, we present a comprehensive study on the formation, nature, and consequences of gallium gradients in CIGS solar cells. The formation of gallium gradients is analyzed in real time during a rapid selenization process by in situ X-ray measurements. In addition, the gallium grading of a CIGS layer grown with an in-line coevaporation process is analyzed by means of depth profiling with mass spectrometry. This gallium gradient of a real solar cell served as input data for device simulations. Depth-dependent occurrence of lateral inhomogeneities on the μm scale in CIGS deposited by the co-evaporation process was investigated by highly spatially resolved luminescence measurements on etched CIGS samples, which revealed a dependence of the optical bandgap, the quasi-Fermi level splitting, transition levels, and the vertical gallium gradient. Transmission electron microscopy analyses of CIGS cross-sections point to a difference in gallium content in the near surface region of neighboring grains. Migration barriers for a copper-vacancy-mediated indium and gallium diffusion in CuInSe2 and CuGaSe2 were calculated using density functional theory. The migration barrier for the InCu antisite in CuGaSe2 is significantly lower compared with the GaCu antisite in CuInSe2, which is in accordance with the experimentally observed Ga gradients in CIGS layers grown by co-evaporation and selenization processes.

Freie Schlagworte: Cu(In,Ga)Se2, selenization, co-evaporation, gallium gradient, inhomogeneity, simulation
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 13 Mai 2014 08:41
Letzte Änderung: 08 Mai 2015 06:46
PPN:
Sponsoren: This work was funded by the German Federal Ministry of Education and Research (BMBF) under contract number 03SF0359 (GRACIS)., The support of the EDDI beamline team and CIGS baseline team at HZB is gratefully acknowledged.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen