TU Darmstadt / ULB / TUbiblio

Mechanical double loop behavior in BaTiO3: Stress induced paraelastic to ferroelastic phase transformation

Daniels, John E. ; Picht, Gunnar ; Kimber, Simon ; Webber, Kyle G. (2013)
Mechanical double loop behavior in BaTiO3: Stress induced paraelastic to ferroelastic phase transformation.
In: Applied Physics Letters, 103 (12)
doi: 10.1063/1.4821446
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The structural origin of the mechanical double loop behavior of polycrystalline BaTiO3 at temperatures just above the Curie point has been investigated using in situ high-energy synchrotron x-ray diffraction during uniaxial compressive mechanical loading. The results show a stress-induced transition from the high temperature paraelastic cubic phase to a ferroelastic tetragonal phase with a domain texture close to the saturated state. The nature of the observed stress-induced phase transition was influenced by the proximity of the temperature to the Curie point. With increasing temperature above the Curie point, the transition stress increased while the rate of the transition decreased.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Daniels, John E. ; Picht, Gunnar ; Kimber, Simon ; Webber, Kyle G.
Art des Eintrags: Bibliographie
Titel: Mechanical double loop behavior in BaTiO3: Stress induced paraelastic to ferroelastic phase transformation
Sprache: Englisch
Publikationsjahr: 16 September 2013
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Physics Letters
Jahrgang/Volume einer Zeitschrift: 103
(Heft-)Nummer: 12
DOI: 10.1063/1.4821446
Kurzbeschreibung (Abstract):

The structural origin of the mechanical double loop behavior of polycrystalline BaTiO3 at temperatures just above the Curie point has been investigated using in situ high-energy synchrotron x-ray diffraction during uniaxial compressive mechanical loading. The results show a stress-induced transition from the high temperature paraelastic cubic phase to a ferroelastic tetragonal phase with a domain texture close to the saturated state. The nature of the observed stress-induced phase transition was influenced by the proximity of the temperature to the Curie point. With increasing temperature above the Curie point, the transition stress increased while the rate of the transition decreased.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektromechanik von Oxiden
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 14 Apr 2014 11:10
Letzte Änderung: 14 Apr 2014 11:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen