TU Darmstadt / ULB / TUbiblio

An Adaptive Cellular Network for Subspace Extraction

Koeppl, H. (2006)
An Adaptive Cellular Network for Subspace Extraction.
2006 Fortieth Asilomar Conference on Signals, Systems and Computers.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The work proposes a novel network structure for the least mean square error reconstruction (LMSER) principle to perform principal subspace analysis (PSA). The LMSER principle allows for an efficient parallel and robust implementation of PSA, where each individual processing cell contains a local adaptation algorithm. Instead of the classical feedforward network topology this work introduces a recursive topology. It is also shown that the fully connected two-layered network can be represented by a network of multiple locally connected processing layers. This locally coupled network closely resembles cellular nonlinear networks (CNN) and is very suitable for a VLSI (very-large-scale-integration) implementation.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Autor(en): Koeppl, H.
Art des Eintrags: Bibliographie
Titel: An Adaptive Cellular Network for Subspace Extraction
Sprache: Englisch
Publikationsjahr: 2006
Ort: Pacific Grove, CA, USA
Verlag: IEEE
Veranstaltungstitel: 2006 Fortieth Asilomar Conference on Signals, Systems and Computers
URL / URN: http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=417672...
Kurzbeschreibung (Abstract):

The work proposes a novel network structure for the least mean square error reconstruction (LMSER) principle to perform principal subspace analysis (PSA). The LMSER principle allows for an efficient parallel and robust implementation of PSA, where each individual processing cell contains a local adaptation algorithm. Instead of the classical feedforward network topology this work introduces a recursive topology. It is also shown that the fully connected two-layered network can be represented by a network of multiple locally connected processing layers. This locally coupled network closely resembles cellular nonlinear networks (CNN) and is very suitable for a VLSI (very-large-scale-integration) implementation.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 12:31
Letzte Änderung: 23 Sep 2021 14:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen