TU Darmstadt / ULB / TUbiblio

Probability metrics to calibrate stochastic chemical kinetics

Koeppl, H. ; Setti, G. ; Pelet, S. ; Mangia, M. ; Petrov, T. ; Peter, M. (2010)
Probability metrics to calibrate stochastic chemical kinetics.
doi: 10.1109/ISCAS.2010.5537549
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Calibration or model parameter estimation from measured data is an ubiquitous problem in engineering. In systems biology this problem turns out to be particularly challenging due to very short data-records, low signal-to-noise ratio of data acquisition, large intrinsic process noise and limited measurement access to only a few, of sometimes several hundreds, state variables. We review state-of-the-art model calibration techniques and also discuss their relation to the general reverse-engineering problem in systems biology. For biomolecular circuits involving low-copy-number molecules we adopt a Markov process setup and discuss a calibration approach based on suitable metrics between probability measures and propose the metrics computation for the multivariate case. In particular, we use Kantorovich's distance and devise an algorithm, for the case when FACS (fluorescence-activated cell sorting) measurements are given. We discuss a case study involving FACS data for the high-osmolarity glycerol (HOG) pathway in budding yeast.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2010
Autor(en): Koeppl, H. ; Setti, G. ; Pelet, S. ; Mangia, M. ; Petrov, T. ; Peter, M.
Art des Eintrags: Bibliographie
Titel: Probability metrics to calibrate stochastic chemical kinetics
Sprache: Englisch
Publikationsjahr: 2010
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on
DOI: 10.1109/ISCAS.2010.5537549
Kurzbeschreibung (Abstract):

Calibration or model parameter estimation from measured data is an ubiquitous problem in engineering. In systems biology this problem turns out to be particularly challenging due to very short data-records, low signal-to-noise ratio of data acquisition, large intrinsic process noise and limited measurement access to only a few, of sometimes several hundreds, state variables. We review state-of-the-art model calibration techniques and also discuss their relation to the general reverse-engineering problem in systems biology. For biomolecular circuits involving low-copy-number molecules we adopt a Markov process setup and discuss a calibration approach based on suitable metrics between probability measures and propose the metrics computation for the multivariate case. In particular, we use Kantorovich's distance and devise an algorithm, for the case when FACS (fluorescence-activated cell sorting) measurements are given. We discuss a case study involving FACS data for the high-osmolarity glycerol (HOG) pathway in budding yeast.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 12:33
Letzte Änderung: 08 Nov 2023 09:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen