TU Darmstadt / ULB / TUbiblio

The Cramer-Rao Bound and DMT Signal Optimisation for the Identification of a Wiener-Type Model

Koeppl, H. ; Josan, A. S. ; Paoli, G. ; Kubin, G. (2004)
The Cramer-Rao Bound and DMT Signal Optimisation for the Identification of a Wiener-Type Model.
In: EURASIP Journal on Applied Signal Processing, 12
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In linear system identification, optimal excitation signals can be determined using the Cramer-Rao bound. This problem has not been thoroughly studied for the nonlinear case. In this work, the Cramer-Rao bound for a factorisable Volterra model is derived. The analytical result is supported with simulation examples. The bound is then used to find the optimal excitation signal out of the class of discrete multitone signals. As the model is nonlinear in the parameters, the bound depends on the model parameters themselves. On this basis, a three-step identification procedure is proposed. To illustrate the procedure, signal optimisation is explicitly performed for a third-order nonlinear model. Methods of nonlinear optimisation are applied for the parameter estimation of the model. As a baseline, the problem of optimal discrete multitone signals for linear FIR filter estimation is reviewed.

Typ des Eintrags: Artikel
Erschienen: 2004
Autor(en): Koeppl, H. ; Josan, A. S. ; Paoli, G. ; Kubin, G.
Art des Eintrags: Bibliographie
Titel: The Cramer-Rao Bound and DMT Signal Optimisation for the Identification of a Wiener-Type Model
Sprache: Englisch
Publikationsjahr: September 2004
Titel der Zeitschrift, Zeitung oder Schriftenreihe: EURASIP Journal on Applied Signal Processing
Jahrgang/Volume einer Zeitschrift: 12
URL / URN: http://asp.eurasipjournals.com/content/2004/12/642938
Zugehörige Links:
Kurzbeschreibung (Abstract):

In linear system identification, optimal excitation signals can be determined using the Cramer-Rao bound. This problem has not been thoroughly studied for the nonlinear case. In this work, the Cramer-Rao bound for a factorisable Volterra model is derived. The analytical result is supported with simulation examples. The bound is then used to find the optimal excitation signal out of the class of discrete multitone signals. As the model is nonlinear in the parameters, the bound depends on the model parameters themselves. On this basis, a three-step identification procedure is proposed. To illustrate the procedure, signal optimisation is explicitly performed for a third-order nonlinear model. Methods of nonlinear optimisation are applied for the parameter estimation of the model. As a baseline, the problem of optimal discrete multitone signals for linear FIR filter estimation is reviewed.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 12:38
Letzte Änderung: 23 Sep 2021 14:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen