TU Darmstadt / ULB / TUbiblio

Information Rate Maximization over a Resistive Grid

Koeppl, H. (2006)
Information Rate Maximization over a Resistive Grid.
The 2006 IEEE International Joint Conference on Neural Network Proceedings.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The work presents the first results of the authors research on adaptive cellular neural networks (CNN) based on a global information theoretic cost-function. It considers the simplest case of optimizing a resistive grid such that the Shannon information rate across the input-output boundaries of the grid is maximized. Besides its importance in information theory, information rate has been proven to be a useful concept for principal as well independent component analysis (PCA, ICA). In contrast to linear fully connected neural networks, resistive grids due to their local coupling can resemble models of physical media and are feasible for a VLSI implementation. Results for spatially invariant as well as for the spatially variant case are presented and their relation to principal subspace analysis (PSA) is outlined. Simulation results show the validity of the proposed results.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Autor(en): Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Information Rate Maximization over a Resistive Grid
Sprache: Englisch
Publikationsjahr: 2006
Ort: Vancouver, BC
Verlag: IEEE
Veranstaltungstitel: The 2006 IEEE International Joint Conference on Neural Network Proceedings
URL / URN: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumbe...
Kurzbeschreibung (Abstract):

The work presents the first results of the authors research on adaptive cellular neural networks (CNN) based on a global information theoretic cost-function. It considers the simplest case of optimizing a resistive grid such that the Shannon information rate across the input-output boundaries of the grid is maximized. Besides its importance in information theory, information rate has been proven to be a useful concept for principal as well independent component analysis (PCA, ICA). In contrast to linear fully connected neural networks, resistive grids due to their local coupling can resemble models of physical media and are feasible for a VLSI implementation. Results for spatially invariant as well as for the spatially variant case are presented and their relation to principal subspace analysis (PSA) is outlined. Simulation results show the validity of the proposed results.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 12:42
Letzte Änderung: 23 Sep 2021 14:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen