TU Darmstadt / ULB / TUbiblio

Deterministic characterization of phase noise in biomolecular oscillators

Koeppl, H. ; Hafner, M. ; Ganguly, A. ; Mehrotra, A. (2011)
Deterministic characterization of phase noise in biomolecular oscillators.
In: Physical biology, 8 (5)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

On top of the many external perturbations, cellular oscillators also face intrinsic perturbations due the randomness of chemical kinetics. Biomolecular oscillators, distinct in their parameter sets or distinct in their architecture, show different resilience with respect to such intrinsic perturbations. Assessing this resilience can be done by ensemble stochastic simulations. These are computationally costly and do not permit further insights into the mechanistic cause of the observed resilience. For reaction systems operating at a steady state, the linear noise approximation (LNA) can be used to determine the effect of molecular noise. Here we show that methods based on LNA fail for oscillatory systems and we propose an alternative ansatz. It yields an asymptotic expression for the phase diffusion coefficient of stochastic oscillators. Moreover, it allows us to single out the noise contribution of every reaction in an oscillatory system. We test the approach on the one-loop model of the Drosophila circadian clock. Our results are consistent with those obtained through stochastic simulations with a gain in computational efficiency of about three orders of magnitude.

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Koeppl, H. ; Hafner, M. ; Ganguly, A. ; Mehrotra, A.
Art des Eintrags: Bibliographie
Titel: Deterministic characterization of phase noise in biomolecular oscillators
Sprache: Englisch
Publikationsjahr: Oktober 2011
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical biology
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 5
URL / URN: http://iopscience.iop.org/1478-3975/8/5/055008/fulltext/
Kurzbeschreibung (Abstract):

On top of the many external perturbations, cellular oscillators also face intrinsic perturbations due the randomness of chemical kinetics. Biomolecular oscillators, distinct in their parameter sets or distinct in their architecture, show different resilience with respect to such intrinsic perturbations. Assessing this resilience can be done by ensemble stochastic simulations. These are computationally costly and do not permit further insights into the mechanistic cause of the observed resilience. For reaction systems operating at a steady state, the linear noise approximation (LNA) can be used to determine the effect of molecular noise. Here we show that methods based on LNA fail for oscillatory systems and we propose an alternative ansatz. It yields an asymptotic expression for the phase diffusion coefficient of stochastic oscillators. Moreover, it allows us to single out the noise contribution of every reaction in an oscillatory system. We test the approach on the one-loop model of the Drosophila circadian clock. Our results are consistent with those obtained through stochastic simulations with a gain in computational efficiency of about three orders of magnitude.

Freie Schlagworte: Animals,Biological,Circadian Rhythm,Circadian Rhythm: physiology,Drosophila,Drosophila: physiology,Models,Stochastic Processes
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 12:43
Letzte Änderung: 24 Jul 2023 13:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen