TU Darmstadt / ULB / TUbiblio

Stochastic Simulations in Systems Biology

Hafner, M. ; Koeppl, H. (2011)
Stochastic Simulations in Systems Biology.
In: Handbook of Research on Computational Science and Engineering: Theory and Practice
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

With the advances in measurement technology for molecular biology, predictive mathematical models of cellular processes come in reach. A large fraction of such models addresses the kinetics of interaction between biomolecules such as proteins, transcription factors, genes and messenger RNA. In contrast to classical chemical kinetics utilizing the reaction-rate equation, the small volume of cellular compartments requires to account for the stochasticity of chemical kinetics. In this chapter we discuss methods to generate sample paths of this underlying stochastic process for situations where the well-stirredness or fast- diffusion assumption holds true. We introduce various approximations to exact simulation algorithms that are more efficient in terms of computational com- plexity. Moreover, we discuss algorithms that account for the multi-scale nature of cellular reaction events.

Typ des Eintrags: Buchkapitel
Erschienen: 2011
Autor(en): Hafner, M. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Stochastic Simulations in Systems Biology
Sprache: Englisch
Publikationsjahr: 2011
Verlag: IGI Global
Buchtitel: Handbook of Research on Computational Science and Engineering: Theory and Practice
Band einer Reihe: 1
URL / URN: http://www.igi-global.com/chapter/handbook-research-computat...
Kurzbeschreibung (Abstract):

With the advances in measurement technology for molecular biology, predictive mathematical models of cellular processes come in reach. A large fraction of such models addresses the kinetics of interaction between biomolecules such as proteins, transcription factors, genes and messenger RNA. In contrast to classical chemical kinetics utilizing the reaction-rate equation, the small volume of cellular compartments requires to account for the stochasticity of chemical kinetics. In this chapter we discuss methods to generate sample paths of this underlying stochastic process for situations where the well-stirredness or fast- diffusion assumption holds true. We introduce various approximations to exact simulation algorithms that are more efficient in terms of computational com- plexity. Moreover, we discuss algorithms that account for the multi-scale nature of cellular reaction events.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 13:10
Letzte Änderung: 23 Sep 2021 14:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen