TU Darmstadt / ULB / TUbiblio

A Bio-inspired Computer Fovea Model based on hexagonal-type cellular neural networks

Huang, C.-H. ; Koeppl, H. (2007)
A Bio-inspired Computer Fovea Model based on hexagonal-type cellular neural networks.
In: IEEE Transactions on circuits and systems-I : regular papers, 54 (1)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

For decades, numerous scientists have examined the following questions: “How do humans see the world?” and “How do humans experience vision?” To answer these questions, this study proposes a computer fovea model based on hexagonal-type cellular neural network (hCNN). Certain biological mechanisms of a retina can be simulated using an in-state-of-art architecture named CNN. Those biological mechanisms include the behaviors of the photoreceptors, horizontal cells, ganglions, and bipolar cells, and their co-operations in the retina. Through investigating the model and the abilities of the CNN, various properties of the human vision system can be simulated. The human visual system possesses numerous interesting properties, which provide natural methods of enhancing visual information. Various visual information enhancing algorithms can be developed using these properties and the proposed model. The proposed algorithms include color constancy, image sharpness, and some others. This study also discusses how the proposed model works for video enhancement and demonstrates it experimentally.

Typ des Eintrags: Artikel
Erschienen: 2007
Autor(en): Huang, C.-H. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: A Bio-inspired Computer Fovea Model based on hexagonal-type cellular neural networks
Sprache: Englisch
Publikationsjahr: 2007
Ort: Vancouver, BC
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on circuits and systems-I : regular papers
Jahrgang/Volume einer Zeitschrift: 54
(Heft-)Nummer: 1
Veranstaltungstitel: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS�I: REGULAR PAPERS, VOL. 54, NO. 1, JANUARY 2007
URL / URN: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4061016
Kurzbeschreibung (Abstract):

For decades, numerous scientists have examined the following questions: “How do humans see the world?” and “How do humans experience vision?” To answer these questions, this study proposes a computer fovea model based on hexagonal-type cellular neural network (hCNN). Certain biological mechanisms of a retina can be simulated using an in-state-of-art architecture named CNN. Those biological mechanisms include the behaviors of the photoreceptors, horizontal cells, ganglions, and bipolar cells, and their co-operations in the retina. Through investigating the model and the abilities of the CNN, various properties of the human vision system can be simulated. The human visual system possesses numerous interesting properties, which provide natural methods of enhancing visual information. Various visual information enhancing algorithms can be developed using these properties and the proposed model. The proposed algorithms include color constancy, image sharpness, and some others. This study also discusses how the proposed model works for video enhancement and demonstrates it experimentally.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 04 Apr 2014 14:23
Letzte Änderung: 23 Sep 2021 14:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen