Dolde, F. ; Jakobi, I. ; Naydenov, B. ; Zhao, N. ; Pezzagna, S. ; Trautmann, C. ; Meijer, J. ; Neumann, P. ; Jelezko, F. ; Wrachtrup, J. (2013)
Room-temperature entanglement between single defect spins in diamond.
In: Nature Physics, 9 (3)
doi: 10.1038/nphys2545
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Entanglement is the central yet fleeting phenomenon of quantum physics. Once being considered a peculiar counter-intuitive property of quantum theory1, it has developed into the most central element of quantum technology. Consequently, there have been a number of experimental demonstrations of entanglement between photons2, atoms3, ions4 and solid-state systems such as spins or quantum dots5, 6, 7, superconducting circuits8, 9 and macroscopic diamond10. Here we experimentally demonstrate entanglement between two engineered single solid-state spin quantum bits (qubits) at ambient conditions. Photon emission of defect pairs reveals ground-state spin correlation. Entanglement (fidelity = 0.67±0.04) is proved by quantum state tomography. Moreover, the lifetime of electron spin entanglement is extended to milliseconds by entanglement swapping to nuclear spins. The experiments mark an important step towards a scalable room-temperature quantum device being of potential use in quantum information processing as well as metrology.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2013 |
Autor(en): | Dolde, F. ; Jakobi, I. ; Naydenov, B. ; Zhao, N. ; Pezzagna, S. ; Trautmann, C. ; Meijer, J. ; Neumann, P. ; Jelezko, F. ; Wrachtrup, J. |
Art des Eintrags: | Bibliographie |
Titel: | Room-temperature entanglement between single defect spins in diamond |
Sprache: | Englisch |
Publikationsjahr: | 2013 |
Verlag: | Macmillan Publishers Limited |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Nature Physics |
Jahrgang/Volume einer Zeitschrift: | 9 |
(Heft-)Nummer: | 3 |
DOI: | 10.1038/nphys2545 |
Kurzbeschreibung (Abstract): | Entanglement is the central yet fleeting phenomenon of quantum physics. Once being considered a peculiar counter-intuitive property of quantum theory1, it has developed into the most central element of quantum technology. Consequently, there have been a number of experimental demonstrations of entanglement between photons2, atoms3, ions4 and solid-state systems such as spins or quantum dots5, 6, 7, superconducting circuits8, 9 and macroscopic diamond10. Here we experimentally demonstrate entanglement between two engineered single solid-state spin quantum bits (qubits) at ambient conditions. Photon emission of defect pairs reveals ground-state spin correlation. Entanglement (fidelity = 0.67±0.04) is proved by quantum state tomography. Moreover, the lifetime of electron spin entanglement is extended to milliseconds by entanglement swapping to nuclear spins. The experiments mark an important step towards a scalable room-temperature quantum device being of potential use in quantum information processing as well as metrology. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien |
Hinterlegungsdatum: | 03 Apr 2014 09:13 |
Letzte Änderung: | 15 Mär 2024 19:05 |
PPN: | |
Sponsoren: | The authors would like to acknowledge financial support by the EU through SQUTEC and Diamant, as well as the DFG through SFB/TR21, the research groups 1493 ‘Diamond quantum materials’ and 1482 as well as the Volkswagen Foundation. |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |