TU Darmstadt / ULB / TUbiblio

Room-temperature entanglement between single defect spins in diamond

Dolde, F. ; Jakobi, I. ; Naydenov, B. ; Zhao, N. ; Pezzagna, S. ; Trautmann, C. ; Meijer, J. ; Neumann, P. ; Jelezko, F. ; Wrachtrup, J. (2013)
Room-temperature entanglement between single defect spins in diamond.
In: Nature Physics, 9 (3)
doi: 10.1038/nphys2545
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Entanglement is the central yet fleeting phenomenon of quantum physics. Once being considered a peculiar counter-intuitive property of quantum theory1, it has developed into the most central element of quantum technology. Consequently, there have been a number of experimental demonstrations of entanglement between photons2, atoms3, ions4 and solid-state systems such as spins or quantum dots5, 6, 7, superconducting circuits8, 9 and macroscopic diamond10. Here we experimentally demonstrate entanglement between two engineered single solid-state spin quantum bits (qubits) at ambient conditions. Photon emission of defect pairs reveals ground-state spin correlation. Entanglement (fidelity = 0.67±0.04) is proved by quantum state tomography. Moreover, the lifetime of electron spin entanglement is extended to milliseconds by entanglement swapping to nuclear spins. The experiments mark an important step towards a scalable room-temperature quantum device being of potential use in quantum information processing as well as metrology.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Dolde, F. ; Jakobi, I. ; Naydenov, B. ; Zhao, N. ; Pezzagna, S. ; Trautmann, C. ; Meijer, J. ; Neumann, P. ; Jelezko, F. ; Wrachtrup, J.
Art des Eintrags: Bibliographie
Titel: Room-temperature entanglement between single defect spins in diamond
Sprache: Englisch
Publikationsjahr: 2013
Verlag: Macmillan Publishers Limited
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Physics
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 3
DOI: 10.1038/nphys2545
Kurzbeschreibung (Abstract):

Entanglement is the central yet fleeting phenomenon of quantum physics. Once being considered a peculiar counter-intuitive property of quantum theory1, it has developed into the most central element of quantum technology. Consequently, there have been a number of experimental demonstrations of entanglement between photons2, atoms3, ions4 and solid-state systems such as spins or quantum dots5, 6, 7, superconducting circuits8, 9 and macroscopic diamond10. Here we experimentally demonstrate entanglement between two engineered single solid-state spin quantum bits (qubits) at ambient conditions. Photon emission of defect pairs reveals ground-state spin correlation. Entanglement (fidelity = 0.67±0.04) is proved by quantum state tomography. Moreover, the lifetime of electron spin entanglement is extended to milliseconds by entanglement swapping to nuclear spins. The experiments mark an important step towards a scalable room-temperature quantum device being of potential use in quantum information processing as well as metrology.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
Hinterlegungsdatum: 03 Apr 2014 09:13
Letzte Änderung: 15 Mär 2024 19:05
PPN:
Sponsoren: The authors would like to acknowledge financial support by the EU through SQUTEC and Diamant, as well as the DFG through SFB/TR21, the research groups 1493 ‘Diamond quantum materials’ and 1482 as well as the Volkswagen Foundation.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen