TU Darmstadt / ULB / TUbiblio

Allometry – Relations to Energy and Abundance

Ehnes, Roswitha (2014)
Allometry – Relations to Energy and Abundance.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung

Kurzbeschreibung (Abstract)

During my PhD, I focused on metabolic rates of litter- and soil-dwelling invertebrates, parameters that exert influence on them or are influenced by metabolism. I started with consumption experi- ments, comparing the estimated amounts of energy taken up with the energetic demand estimated via metabolic-rate measurements. These experiments showed that, generally, ingestion as well as metabolic rates increase for beetle and spider species with increasing temperature. However, while ingestion increased only slightly with increasing temperature, metabolic demand increased strongly thus reducing the ingestion efficiency with increasing temperature (Chapter 3). This might have strong effects on the whole food web in a natural system. Populations might depict a higher stability but on the other hand, due to the lowered ingestion efficiencies, predators might become more prone to starvation and even extinction (Chapter 3). In the next study again metabolic rates and consumption rates (functional responses) were compared across a temperature range, but with a different focus. Here, ground beetles in combination with a more resident and a mobile prey type were used to examine the different effects of temperature on these predator-prey pairs (Chapter 4). Generally, increasing temperature led to an increase in metabolic rate, a decrease in energetic ef- ficiency and a decrease in handling time. However, the effect of increased temperature on attack rate differed for the two prey types. For mobile prey the attack rate increased with temperature, while it was not affected for the more resident prey. This implies that an increase in temperature might stabilize population dynamics. Since the first two studies had shown that the metabolic rate of different organisms is differently affected by body mass and temperature, I focused on the ef- fects of body mass and temperature on metabolic rates for my next study. Therefore, I compiled a large dataset on metabolic rates of mainly soil-dwelling invertebrates by performing measurements of respiration and by literature research (Chapter 5). With this dataset I tested a very prominent theory (Metabolic Theory of Ecology) on how metabolism depends on body mass and temperature. As this theory uses a fixed three-quarter allometric exponent (fixed body-mass dependence), which the results of chapter 3 and 4 proved not to be useful, I also used a relaxed version (unrestricted body-mass and temperature dependence). Finally, I tested a model, similar to the relaxed one but incorporating phylogenetic information, thus each phylogenetic group would be fit independently. This phylogenetic model obtained the highest quality thus emphasizing the importance of account- ing for the phylogenetic affiliation of an organism (Chapter 5). Thus, the results of this study allow a conservative energy-demand estimation for different terrestrial invertebrate species. Having seen that metabolic rates of organisms as well as their consumption rates increase with temperature, the question remains how the assimilation efficiencies change. The effect of tempera- ture on the assimilation efficiencies of different consumer types (carnivore, detritivore, herbivore) had not been studied yet. For filling this gap, a database on assimilation efficiencies for different consumer types was used and the database on metabolic rates (Chapter 5). Metabolic rates in- creased with temperature for all consumer types while the assimilation efficiency only increased for herbivores and was independent of temperature for the other two consumer types (Chapter 6). From this it follows that maintenance consumption rates increase with temperature, however the amount of increase differs between the consumer types. For carnivores the metabolic rates in- creased stronger with increasing temperature than did their consumption rates, which might lead to starvation. Accelerated consumption rates of detritivores could lead to increased turnover rates and might result in increasing biomass of the populations (Chapter 6). Aside from using the metabolic-rate data with other laboratory data, it may also provide informa- tion on the energy distribution in natural systems while its direct measurement is not possible. For testing the Structured Resource Theory of Sexual Reproduction (SRTS) abundance and body-mass data on oribatid mites in differently used habitats were used to estimate the metabolic demand of the oribatid community (Chapter 7). The SRTS suggests that limited resources favor sexually re- producing consumers while ample resources would be superiorly exploited by parthenogenetically reproducing species. Abundance and metabolic demand served as a surrogate for resource supply. The data supported the predictions of the SRTS as in habitats with a high amount of resources (as indicated by high population densities or high metabolic rates) parthenogenetic reproduction occurred in a higher proportion (Chapter 7). Finally, I used the metabolic parameters to estimate the energetic demand of soil-invertebrate communities in differently used forests. Abundances and body masses (via body lengths) were obtained by field sampling. Based on these data I calculated the metabolic demand, the population energy use (PEU) and the biomass of the different species present (Chapter 8). Thus, this dataset allowed testing different patterns that have been described to apply to energy or biomass distribution in a community. The energetic equivalence is observed if populations of small and large organisms use the same amount of energy. The biomass equivalence on the other hand states that the biomasses are independent of body mass. I compared the results with these patterns. Generally, metabolic rates increased with body mass of the species and abun- dances declined independently of phylogenetic group, land-use type or feeding type. Biomasses increased in all cases thus clearly rejecting the biomass-equivalence hypothesis. Population en- ergy use mostly increased with body mass. Furthermore, a more detailed analysis (phylogenetic groups separately in each land-use type) showed that the energetic equivalence is sometimes met and sometimes not. However, the data support predictions of the resource-thinning hypothesis, which states that abundances should decrease with trophic level, and mostly the allometric-degree hypothesis stating that PEU should increase with increasing body mass. Thus, predictions from food-web theory regarding the structure of natural communities are met and further integration of metabolic and food-web theory might help to explain the natural community structures.

Typ des Eintrags: Dissertation
Erschienen: 2014
Autor(en): Ehnes, Roswitha
Art des Eintrags: Erstveröffentlichung
Titel: Allometry – Relations to Energy and Abundance
Sprache: Englisch
Referenten: Brose, Prof. Dr. Ulrich ; Blüthgen, Prof. Dr. Nico
Publikationsjahr: 2014
Ort: Darmstadt, Germany
Datum der mündlichen Prüfung: 12 Dezember 2013
URL / URN: http://tuprints.ulb.tu-darmstadt.de/3750
Kurzbeschreibung (Abstract):

During my PhD, I focused on metabolic rates of litter- and soil-dwelling invertebrates, parameters that exert influence on them or are influenced by metabolism. I started with consumption experi- ments, comparing the estimated amounts of energy taken up with the energetic demand estimated via metabolic-rate measurements. These experiments showed that, generally, ingestion as well as metabolic rates increase for beetle and spider species with increasing temperature. However, while ingestion increased only slightly with increasing temperature, metabolic demand increased strongly thus reducing the ingestion efficiency with increasing temperature (Chapter 3). This might have strong effects on the whole food web in a natural system. Populations might depict a higher stability but on the other hand, due to the lowered ingestion efficiencies, predators might become more prone to starvation and even extinction (Chapter 3). In the next study again metabolic rates and consumption rates (functional responses) were compared across a temperature range, but with a different focus. Here, ground beetles in combination with a more resident and a mobile prey type were used to examine the different effects of temperature on these predator-prey pairs (Chapter 4). Generally, increasing temperature led to an increase in metabolic rate, a decrease in energetic ef- ficiency and a decrease in handling time. However, the effect of increased temperature on attack rate differed for the two prey types. For mobile prey the attack rate increased with temperature, while it was not affected for the more resident prey. This implies that an increase in temperature might stabilize population dynamics. Since the first two studies had shown that the metabolic rate of different organisms is differently affected by body mass and temperature, I focused on the ef- fects of body mass and temperature on metabolic rates for my next study. Therefore, I compiled a large dataset on metabolic rates of mainly soil-dwelling invertebrates by performing measurements of respiration and by literature research (Chapter 5). With this dataset I tested a very prominent theory (Metabolic Theory of Ecology) on how metabolism depends on body mass and temperature. As this theory uses a fixed three-quarter allometric exponent (fixed body-mass dependence), which the results of chapter 3 and 4 proved not to be useful, I also used a relaxed version (unrestricted body-mass and temperature dependence). Finally, I tested a model, similar to the relaxed one but incorporating phylogenetic information, thus each phylogenetic group would be fit independently. This phylogenetic model obtained the highest quality thus emphasizing the importance of account- ing for the phylogenetic affiliation of an organism (Chapter 5). Thus, the results of this study allow a conservative energy-demand estimation for different terrestrial invertebrate species. Having seen that metabolic rates of organisms as well as their consumption rates increase with temperature, the question remains how the assimilation efficiencies change. The effect of tempera- ture on the assimilation efficiencies of different consumer types (carnivore, detritivore, herbivore) had not been studied yet. For filling this gap, a database on assimilation efficiencies for different consumer types was used and the database on metabolic rates (Chapter 5). Metabolic rates in- creased with temperature for all consumer types while the assimilation efficiency only increased for herbivores and was independent of temperature for the other two consumer types (Chapter 6). From this it follows that maintenance consumption rates increase with temperature, however the amount of increase differs between the consumer types. For carnivores the metabolic rates in- creased stronger with increasing temperature than did their consumption rates, which might lead to starvation. Accelerated consumption rates of detritivores could lead to increased turnover rates and might result in increasing biomass of the populations (Chapter 6). Aside from using the metabolic-rate data with other laboratory data, it may also provide informa- tion on the energy distribution in natural systems while its direct measurement is not possible. For testing the Structured Resource Theory of Sexual Reproduction (SRTS) abundance and body-mass data on oribatid mites in differently used habitats were used to estimate the metabolic demand of the oribatid community (Chapter 7). The SRTS suggests that limited resources favor sexually re- producing consumers while ample resources would be superiorly exploited by parthenogenetically reproducing species. Abundance and metabolic demand served as a surrogate for resource supply. The data supported the predictions of the SRTS as in habitats with a high amount of resources (as indicated by high population densities or high metabolic rates) parthenogenetic reproduction occurred in a higher proportion (Chapter 7). Finally, I used the metabolic parameters to estimate the energetic demand of soil-invertebrate communities in differently used forests. Abundances and body masses (via body lengths) were obtained by field sampling. Based on these data I calculated the metabolic demand, the population energy use (PEU) and the biomass of the different species present (Chapter 8). Thus, this dataset allowed testing different patterns that have been described to apply to energy or biomass distribution in a community. The energetic equivalence is observed if populations of small and large organisms use the same amount of energy. The biomass equivalence on the other hand states that the biomasses are independent of body mass. I compared the results with these patterns. Generally, metabolic rates increased with body mass of the species and abun- dances declined independently of phylogenetic group, land-use type or feeding type. Biomasses increased in all cases thus clearly rejecting the biomass-equivalence hypothesis. Population en- ergy use mostly increased with body mass. Furthermore, a more detailed analysis (phylogenetic groups separately in each land-use type) showed that the energetic equivalence is sometimes met and sometimes not. However, the data support predictions of the resource-thinning hypothesis, which states that abundances should decrease with trophic level, and mostly the allometric-degree hypothesis stating that PEU should increase with increasing body mass. Thus, predictions from food-web theory regarding the structure of natural communities are met and further integration of metabolic and food-web theory might help to explain the natural community structures.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Im Verlauf meiner Dissertation habe ich mich mit den verschiedenen Aspekten des Metabolismus von wirbellosen Tieren unnd dessen Beeinflussung durch andere Faktoren beschäftigt. Begin- nend mit vergleichenden Untersuchungen der Energieaufnahme und des Energieverbrauchs bei verschiedenen Wirbellosen, besonders im Hinblick auf unterschiedliche Umgebungstemperaturen, habe ich mich mit den unterschiedlichen Parametern beschäftigt, die die Fraßbeziehungen zwis- chen Räuber und Beute modifizieren können, sowie deren Auswirkungen auf die Energiebilanz des Räubers. Welchen Einfluss hat eine Temperaturerhöhung auf das Fraßverhalten des Räubers und wie verändert sich dabei seine Effizienz? Diese Frage und die, der daraus resultierenden Kon- sequenz für die Stabilität von Nahrungsnetzen konnten, mit Hilfe von Fraßversuchen bei unter- schiedlichen Temperaturen geklärt werden (Kapitel 3). Daran anschliessend rückten die Parameter der funktionellen Antwort (Fraßverhalten des Räubers in Abhängigkeit von der Beutedichte, engl: functional response) und deren Temperaturabhängigkeiten in den Fokus. Hierbei zeigte sich, dass die Fangrate (Fangen und Fressen der Beute, engl.: capture rate) abhängig von der Mobilität der Beute sich bei steigender Temperatur unterschiedlich verhält (Kapitel 4). So steigt die Fangrate mit der Temperatur für mobile Beutetiere, während sie für stationäre Beutetiere gleich bleibt. Zusam- men mit einem durch die Temperatur erhöhten Stoffwechsel ergeben sich für einen Räuber daraus eine abnehmende Energieeffizienz, was im Extremfall die Deckung des Nahrungsbedarfs unmöglich machen könnte. Da die Wirkung der Temperatur auf die bisher untersuchten Wirbellosen unterschiedlich ausfiel, habe ich mich in einer weiteren Untersuchung auf die Effekte von Körpermasse und Temperatur sowie der phylogenetischen Zugehörigkeit auf die Stoffwechselraten beschäftigt. Mit Hilfe von Respirationsmessungen und Literaturrecherche entstand ein großer Datensatz, der die separate Er- mittlung der Parameter, allometrischer (körpermassenabhängiger) Exponent, Aktivierungsenergie sowie eines Korrekturfaktors für neun verschiedene phylogenetische Gruppen der streu- und bo- denbewohnenden Wirbellosenfauna ermöglichte. In dieser Studie habe ich mich mit markanten Theorien zum Verhältnis von Stoffwechsel zu Körpergröße und Temperatur beschäftigt. Der, in der metabolischen Theorie der Ökologie (Metabolic Theory of Ecology), postulierte universale Exponent zeigte sich dabei als nicht passend. Die Analyse zeigte, dass die Einbeziehung phylo- genetischer Informationen die Qualität des Models stark erhöhen kann, was deren Wichtigkeit für weitere Untersuchungen unterstreicht (Kapitel 5). Es gibt also nicht einen allometrischen Exponenten, der alle Organismen gleich gut beschreibt, sondern für unterschiedliche Tiergrup- pen unterschiedliche. Anwendung fanden die so gewonnenen Paramter in verschiedenen weiteren Untersuchungen. Zusammengenommen mit Daten zur Aufnahmeeffizienz (engl: assimilation effi- ciency) lassen sich so Schlüsse ziehen über diese Abhängigkeit von Temperatur und Körpermasse. Dabei wird, im Gegensatz zu den Kapiteln 3 und 4, nicht nur der Konsum eines Tieres mit seinem Stoffwechsel ins Verhältnis gesetzt, sondern zusätzlich noch die Menge an Energie, die ein Kon- sument aus seiner Resource zu ziehen in der Lage ist, betrachtet. Respiration und Assimilation hängt je nach Konsumententyp unterschiedlich stark von Temperatur ab. Bemerkenswert ist, wie sich der Instandhaltungskonsum (überlebensnotwendige Nahrungsaufnahme, engl: maintenance consumption), mit steigender Temperatur für verschiedene Konsumententypen verhält. Während Herbivore und Detritivore in der Lage sind mehr Energie als nötig aufzunehmen, was zu Popula- tionswachstum führen kann, so sind Carnivore kaum in der Lage ihren rapide steigenden Bedarf zu decken, was zu Hungern oder dem Aussterben der Population führen kann (Kapitel 6). Es folgten zwei weitere Studien, in denen die Parameter der Stoffwechselraten Anwendung fanden um mit Hilfe von Felddaten unterschiedliche Theorien zu testen. Die Theorie, nach der begrenzte Resourcen sexuelle, reichliche Resourcen jedoch asexuelle Fortpflanzung begünstigen (‘Structured Resource Theory of Sexual Reproduction’) wurde mit Daten über die Häufigkeit von Oribatiden (Milben) bzw. deren Stoffwechsel und dem Verhältnis von asexuell bzw. sex- uell sich fortpflanzenden Arten bzw. Individuen getestet (Kapitel 7). Bei dieser Theorie wird davon ausgegangen, dass in Tiergemeinschaften, in denen die Resourcen knapp sind eher sexuelle Fortpflanzung vorherrscht, da diese die immer neue Anpassung an neue oder wechselnde Arten von Resourcen besser ermöglicht. In Tiergesellschaften, in denen ein hohes Übermaß an Resourcen zu finden ist, so wie es bei Gesellschaften, dieser auf Detritus beruhenden Arten der Fall war, ist die asexuelle Fortpflanzung im Vorteil, da Resourcen effektiver ausgebeutet werden können. Die Daten über die Verteilung der Asexuellen bestätigte die Theorie. Wobei nicht allein die Quantität der Resource, sondern auch ihre Qualität eine große Rolle spielen. So ist die Menge an Resourcen in tropischen Wäldern vergleichsweise groß, die Qualität für zersetzende Organismen allerdings gering, was das geringe Auftreten asexueller Arten bestätigt. Mit einem größeren Datensatz mit Abundanzen verschiedener bodenbewohnender Wirbelloser in Kombination mit den phylogenetisch spezifischen Parametern für die Bestimmung des Stof- fwechsels konnte der Energieverbrauch von Artengemeinschaften in verschieden stark genutzten Wäldern bestimmt werden (Kapitel 8). Die vorherrschenden Theorien zu Abundanz und Biomasse wurden dabei betrachtet. Die Theorie der Biomasse, die besagt, das über alle Größenklassen die Biomasse unverändert bleibt, konnte widerlegt werden. Unklarer waren allerdings die Ergebnisse hinsichtlich der Theorie der energetischen Gleichverteilung. Dieses Muster bezeichnet eine gle- ichmäßig verteilte Energienutzung über die verschiedenen Körpergrößenklassen. Die Ergebnisse waren variabel, teils mit dem Muster zu vereinbaren, teils nicht. Allerdings bestätigen die Ergeb- nisse Funde anderer Studien zur Nahrungsnetztheorie, die zeigen, dass eine Monopolisierung der Energie durch größere Tiere stattfindet und für die Stabilität von Nahrungsnetzen von Bedeutung ist. So zeigt meine Arbeit die verschiedenen Aspekte in denen der Stoffwechsel eine entscheidende Rolle spielt und wie er auf mannigfache Weise beeinflusst wird, sowie deren Effekte auf die Inter- aktionen zwischen Organismen in komplexen natürlichen Systemen.

Deutsch
URN: urn:nbn:de:tuda-tuprints-37501
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
Hinterlegungsdatum: 30 Mär 2014 19:55
Letzte Änderung: 30 Mär 2014 19:55
PPN:
Referenten: Brose, Prof. Dr. Ulrich ; Blüthgen, Prof. Dr. Nico
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 12 Dezember 2013
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen