TU Darmstadt / ULB / TUbiblio

Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors

Dittmer, Robert ; Gobeljic, Danka ; Jo, Wook ; Shvartsman, Vladimir V. ; Lupascu, Doru C. ; Jones, Jacob L. ; Rödel, Jürgen (2014)
Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors.
In: Journal of Applied Physics, 115 (8)
doi: 10.1063/1.4867157
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The effect of heterovalent B-site doping on ergodicity of relaxor ferroelectrics is studied using (1 − y)(0.81Bi1/2 Na 1/2TiO3-0.19Bi1/2K1/2TiO3)-yBiZn1/2Ti1/2O3 (BNT-BKT-BZT) with y = {0.02;0.03;0.04} as a model system. Both the large- and small-signal parameters are studied as a function of electric field. The crystal structure is assessed by means of neutron diffraction in the initial state and after exposure to a high electric field. In order to measure ferroelastic domain textures, diffraction patterns of the poled samples are collected as a function of sample rotation angle. Piezoresponse force microscopy (PFM) is employed to probe the microstructure for polar regions at a nanoscopic scale. For low electric fields E < 2 kV·mm−1, large- and small-signal constitutive behavior do not change with composition. At high electric fields, however, drastic differences are observed due to a field-induced phase transition into a long-range ordered state. It is hypothesized that increasing BZT content decreases the degree of non-ergodicity; thus, the formation of long-range order is impeded. It is suggested that frozen and dynamic polar nano regions exist to a different degree, depending on the BZT content. This image is supported by PFM measurements. Moreover, PFM measurements suggest that the relaxation mechanism after removal of the bias field is influenced by surface charges.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Dittmer, Robert ; Gobeljic, Danka ; Jo, Wook ; Shvartsman, Vladimir V. ; Lupascu, Doru C. ; Jones, Jacob L. ; Rödel, Jürgen
Art des Eintrags: Bibliographie
Titel: Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors
Sprache: Englisch
Publikationsjahr: 28 Februar 2014
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 115
(Heft-)Nummer: 8
DOI: 10.1063/1.4867157
Kurzbeschreibung (Abstract):

The effect of heterovalent B-site doping on ergodicity of relaxor ferroelectrics is studied using (1 − y)(0.81Bi1/2 Na 1/2TiO3-0.19Bi1/2K1/2TiO3)-yBiZn1/2Ti1/2O3 (BNT-BKT-BZT) with y = {0.02;0.03;0.04} as a model system. Both the large- and small-signal parameters are studied as a function of electric field. The crystal structure is assessed by means of neutron diffraction in the initial state and after exposure to a high electric field. In order to measure ferroelastic domain textures, diffraction patterns of the poled samples are collected as a function of sample rotation angle. Piezoresponse force microscopy (PFM) is employed to probe the microstructure for polar regions at a nanoscopic scale. For low electric fields E < 2 kV·mm−1, large- and small-signal constitutive behavior do not change with composition. At high electric fields, however, drastic differences are observed due to a field-induced phase transition into a long-range ordered state. It is hypothesized that increasing BZT content decreases the degree of non-ergodicity; thus, the formation of long-range order is impeded. It is suggested that frozen and dynamic polar nano regions exist to a different degree, depending on the BZT content. This image is supported by PFM measurements. Moreover, PFM measurements suggest that the relaxation mechanism after removal of the bias field is influenced by surface charges.

Freie Schlagworte: Atomic force microscopy; Piezoelectric fields; Relaxor ferroelectrics Polarization; Electric fields; Neutron diffraction; Crystal structure; Electric measurements; Electrical properties; Sodium
Zusätzliche Informationen:

SFB 595 A1

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A1: Herstellung keramischer, texturierter Akuatoren mit hoher Dehnung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
11 Fachbereich Material- und Geowissenschaften
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 28 Feb 2014 10:15
Letzte Änderung: 28 Feb 2014 10:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen