TU Darmstadt / ULB / TUbiblio

Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

Gröting, Melanie ; Albe, Karsten (2014)
Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures.
In: Physical Review B, 89 (5)
doi: 10.1103/PhysRevB.89.054105
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTi03 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3 – CaTiO3 and Na1/2Bi1/2TiO3 – BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Gröting, Melanie ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures
Sprache: Englisch
Publikationsjahr: 24 Februar 2014
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review B
Jahrgang/Volume einer Zeitschrift: 89
(Heft-)Nummer: 5
DOI: 10.1103/PhysRevB.89.054105
Kurzbeschreibung (Abstract):

In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTi03 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3 – CaTiO3 and Na1/2Bi1/2TiO3 – BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

Zusätzliche Informationen:

SFB 595 C1

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung > Teilprojekt C1: Quantenmechanische Computersimulationen zur Elektronen- und Defektstruktur oxidischer Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
11 Fachbereich Material- und Geowissenschaften
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 25 Feb 2014 14:01
Letzte Änderung: 27 Feb 2014 14:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen