Heckmann, Lotta (2013)
Thermodynamik und Phasenverhalten einfacher Modelle für Wasser.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In der vorliegenden Arbeit werden mehrere einfache Wassermodelle in Hinblick auf ihr Phasendiagramm und verschiedene Anomalien untersucht und verglichen. Im ersten Teil der Arbeit wird ein neues, eindimensionales Modell für Wasser vorgestellt, das analytisch behandelt werden kann und neben mehreren Anomalien auch einen Flüssig-Gas- und einen Flüssig- Flüssig-Übergang aufweist. An diesem Modell zeigt sich, dass zwei grundlegende Eigenschaften, die für Wasser zutreffen, bereits ausreichen, um wasserähnliches Verhalten zu erzeugen: eine lokale Möglichkeit für Wasserstoffbrückenbindungen und eine globale Anziehung zwischen Teilchen. Der Flüssig-Flüssig-Übergang tritt allerdings nur auf, wenn die Wasserstoffbrückenbindungen stark genug sind. Diese Untersuchung liefert somit einen Hinweis auf Bedingungen in Bezug auf die verschiedenen Szenarien für unterkühltes Wasser. Das vorgestellte Modell wird im zweiten Teil mit zwei anderen Modellen für flüssiges Wasser verglichen, die bereits mehrfach untersucht wurden. Alle drei Modelle zeigen qualitativ identische, wasserähnliche Eigenschaften, wie beispielsweise mehrere Anomalien. Dieser Befund ist anhand der Definitionen der drei Modelle nicht trivial, da sie mikroskopisch sehr unterschiedlich motiviert sind. Die Ähnlichkeit wird dadurch erklärt, dass alle drei Modelle eine zentrale Gemeinsamkeit aufweisen: Es lassen sich jeweils drei Mikrozustände definieren, die von Gruppen nächster Nachbarn besetzt werden können. Die Temperatur- und Druckabhängigkeit der Besetzung dieser drei Zustände ist in den drei Modellen nahezu identisch. Diese Untersuchung schafft eine neue Sichtweise auf die drei Modelle und hebt ein grundlegendes Prinzip hervor, das in einfachen Wassermodellen implementiert ist. Motiviert durch diese Erkenntnis wird im dritten Teil dieser Arbeit ein neues Modell vorgeschlagen, dessen Grundannahme darin besteht, dass Gruppen benachbarter Teilchen drei Zustände besetzen können. Tatsächlich kann dieses Modell die gleichen Anomalien und das gleiche Phasenverhalten reproduzieren, wie die im zweiten Teil betrachteten, komplexeren Modelle. Es kann somit als Kern der drei Modelle verstanden werden. Zudem können durch Variation der Parameter verschiedene Szenarien reproduziert werden, die für unterkühltes Wasser vorgeschlagen wurden. Anhand dieses Modells wird gezeigt, dass ein bestimmter Zusammenhang zwischen Volumen, Entropie und Energie der zugänglichen Mikrozustände als Bestandteil eines Wassermodells essentiell ist. Im vierten und letzten Teil der Arbeit wird eines der beiden Vergleichsmodelle aus dem zweiten Teil näher untersucht. Mit einer neuen Formulierung als Potts-Modell (ein verallgemeinertes Ising-Modell) wird gezeigt, dass das Modell generisch einen Phasenübergang erster Ordnung zwischen zwei Flüssigkeiten ohne kritischen Punkt aufweist. Dies steht im Widerspruch zu vorherigen Publikationen, die für das gleiche Modell einen Phasenübergang mit kritischem Punkt gefunden haben. Diese Diskrepanz wird diskutiert und es wird gezeigt, dass eine für flüssiges Wasser realistische Anpassung des Modells zu einem kritischen Punkt führt. In dieser Arbeit wird somit aufgezeigt, dass bereits sehr einfache Modelle das Phasendiagramm von Wasser sowie mehrere Anomalien erzeugen können. Aus diesen Modellen können grundlegende Prinzipien abgeleitet werden, die in einem realistischen Wassermodell enthalten sein sollten. In der flüssigen Phase ist eine Antikorrelation zwischen Volumen und Energie als Bestandteil eines Wassermodells essentiell. In Bezug auf die verschiedenen Szenarien für unterkühltes Wasser wurde in dieser Arbeit beobachtet, dass die einfachen Modelle generisch einen HDL-LDL-Übergang aufweisen, wenn starke Wasserstoffbrückenbindungen gebildet werden können. Da dies in echtem Wasser der Fall ist, unterstützt diese Arbeit die Hypothesen, die einen Phasenübergang im unterkühlten Bereich postulieren.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2013 | ||||
Autor(en): | Heckmann, Lotta | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Thermodynamik und Phasenverhalten einfacher Modelle für Wasser | ||||
Sprache: | Deutsch | ||||
Referenten: | Drossel, Prof. Dr. Barbara ; Vogel, Prof. Dr. Michael | ||||
Publikationsjahr: | 2013 | ||||
Datum der mündlichen Prüfung: | 18 Dezember 2013 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/3792 | ||||
Kurzbeschreibung (Abstract): | In der vorliegenden Arbeit werden mehrere einfache Wassermodelle in Hinblick auf ihr Phasendiagramm und verschiedene Anomalien untersucht und verglichen. Im ersten Teil der Arbeit wird ein neues, eindimensionales Modell für Wasser vorgestellt, das analytisch behandelt werden kann und neben mehreren Anomalien auch einen Flüssig-Gas- und einen Flüssig- Flüssig-Übergang aufweist. An diesem Modell zeigt sich, dass zwei grundlegende Eigenschaften, die für Wasser zutreffen, bereits ausreichen, um wasserähnliches Verhalten zu erzeugen: eine lokale Möglichkeit für Wasserstoffbrückenbindungen und eine globale Anziehung zwischen Teilchen. Der Flüssig-Flüssig-Übergang tritt allerdings nur auf, wenn die Wasserstoffbrückenbindungen stark genug sind. Diese Untersuchung liefert somit einen Hinweis auf Bedingungen in Bezug auf die verschiedenen Szenarien für unterkühltes Wasser. Das vorgestellte Modell wird im zweiten Teil mit zwei anderen Modellen für flüssiges Wasser verglichen, die bereits mehrfach untersucht wurden. Alle drei Modelle zeigen qualitativ identische, wasserähnliche Eigenschaften, wie beispielsweise mehrere Anomalien. Dieser Befund ist anhand der Definitionen der drei Modelle nicht trivial, da sie mikroskopisch sehr unterschiedlich motiviert sind. Die Ähnlichkeit wird dadurch erklärt, dass alle drei Modelle eine zentrale Gemeinsamkeit aufweisen: Es lassen sich jeweils drei Mikrozustände definieren, die von Gruppen nächster Nachbarn besetzt werden können. Die Temperatur- und Druckabhängigkeit der Besetzung dieser drei Zustände ist in den drei Modellen nahezu identisch. Diese Untersuchung schafft eine neue Sichtweise auf die drei Modelle und hebt ein grundlegendes Prinzip hervor, das in einfachen Wassermodellen implementiert ist. Motiviert durch diese Erkenntnis wird im dritten Teil dieser Arbeit ein neues Modell vorgeschlagen, dessen Grundannahme darin besteht, dass Gruppen benachbarter Teilchen drei Zustände besetzen können. Tatsächlich kann dieses Modell die gleichen Anomalien und das gleiche Phasenverhalten reproduzieren, wie die im zweiten Teil betrachteten, komplexeren Modelle. Es kann somit als Kern der drei Modelle verstanden werden. Zudem können durch Variation der Parameter verschiedene Szenarien reproduziert werden, die für unterkühltes Wasser vorgeschlagen wurden. Anhand dieses Modells wird gezeigt, dass ein bestimmter Zusammenhang zwischen Volumen, Entropie und Energie der zugänglichen Mikrozustände als Bestandteil eines Wassermodells essentiell ist. Im vierten und letzten Teil der Arbeit wird eines der beiden Vergleichsmodelle aus dem zweiten Teil näher untersucht. Mit einer neuen Formulierung als Potts-Modell (ein verallgemeinertes Ising-Modell) wird gezeigt, dass das Modell generisch einen Phasenübergang erster Ordnung zwischen zwei Flüssigkeiten ohne kritischen Punkt aufweist. Dies steht im Widerspruch zu vorherigen Publikationen, die für das gleiche Modell einen Phasenübergang mit kritischem Punkt gefunden haben. Diese Diskrepanz wird diskutiert und es wird gezeigt, dass eine für flüssiges Wasser realistische Anpassung des Modells zu einem kritischen Punkt führt. In dieser Arbeit wird somit aufgezeigt, dass bereits sehr einfache Modelle das Phasendiagramm von Wasser sowie mehrere Anomalien erzeugen können. Aus diesen Modellen können grundlegende Prinzipien abgeleitet werden, die in einem realistischen Wassermodell enthalten sein sollten. In der flüssigen Phase ist eine Antikorrelation zwischen Volumen und Energie als Bestandteil eines Wassermodells essentiell. In Bezug auf die verschiedenen Szenarien für unterkühltes Wasser wurde in dieser Arbeit beobachtet, dass die einfachen Modelle generisch einen HDL-LDL-Übergang aufweisen, wenn starke Wasserstoffbrückenbindungen gebildet werden können. Da dies in echtem Wasser der Fall ist, unterstützt diese Arbeit die Hypothesen, die einen Phasenübergang im unterkühlten Bereich postulieren. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-37923 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften 500 Naturwissenschaften und Mathematik > 530 Physik |
||||
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) 05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Statistische Physik und komplexe Systeme |
||||
Hinterlegungsdatum: | 23 Feb 2014 20:55 | ||||
Letzte Änderung: | 23 Feb 2014 20:55 | ||||
PPN: | |||||
Referenten: | Drossel, Prof. Dr. Barbara ; Vogel, Prof. Dr. Michael | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 18 Dezember 2013 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |