TU Darmstadt / ULB / TUbiblio

New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials

Pradeep, V. S. ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Sorarù, Gian Domenico (2014)
New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials.
In: Electrochimica Acta, 119
doi: 10.1016/j.electacta.2013.12.037
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Polymer derived silicon oxycarbide (SiOC) materials are prepared by the pyrolysis of preceramic polymers obtained from polyhydridomethylsiloxane using 1,3,5,7-tetramethyl1,3,5,7-tetravinyl cyclotetrasiloxane or divinyl benzene as a cross-linking agent. The pyrolysis is carried out in an inert atmosphere at 1000 and 1300 °C. The carbon content of SiOC is varied by changing the amount of starting precursors maintaining the same O/Si atomic ratio of about 1. Electrochemical measurements are performed in order to evaluate the materials in terms of their application as anodes in Li-ion batteries. Detailed structural characterization study is performed using complementary techniques with the aim of correlating the electrochemical behavior with the structure of the SiOC anodes. Results suggest that SiOC anodes behave as a composite material consisting of a disordered silicon oxycarbide phase having a very high first insertion capacity of ca 1300 mAh g−1 and a free C phase. However, the charge irreversible trapped into the amorphous silicon oxycarbide network is also high and therefore the maximum reversible lithium storage capacity of 650mAh g−1 is measured on high-C content SiOCs for which the balance between the two phases, namely the amorphous silicon oxycarbide and the free C phase, is optimal. The high carbon content SiOC show also an excellent cycling stability and performance at high charging/discharging rate: the reversible capacity at 2 C rate being around 200 mAh g−1. Increasing the pyrolysis temperature has an opposite effect on the low-C and high-C materials: for the latter one the reversible capacity decreases following a known trend while the former shows an increase of the reversible capacity which has never been observed before for similar materials.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Pradeep, V. S. ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Sorarù, Gian Domenico
Art des Eintrags: Bibliographie
Titel: New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials
Sprache: Englisch
Publikationsjahr: 10 Februar 2014
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Electrochimica Acta
Jahrgang/Volume einer Zeitschrift: 119
DOI: 10.1016/j.electacta.2013.12.037
Kurzbeschreibung (Abstract):

Polymer derived silicon oxycarbide (SiOC) materials are prepared by the pyrolysis of preceramic polymers obtained from polyhydridomethylsiloxane using 1,3,5,7-tetramethyl1,3,5,7-tetravinyl cyclotetrasiloxane or divinyl benzene as a cross-linking agent. The pyrolysis is carried out in an inert atmosphere at 1000 and 1300 °C. The carbon content of SiOC is varied by changing the amount of starting precursors maintaining the same O/Si atomic ratio of about 1. Electrochemical measurements are performed in order to evaluate the materials in terms of their application as anodes in Li-ion batteries. Detailed structural characterization study is performed using complementary techniques with the aim of correlating the electrochemical behavior with the structure of the SiOC anodes. Results suggest that SiOC anodes behave as a composite material consisting of a disordered silicon oxycarbide phase having a very high first insertion capacity of ca 1300 mAh g−1 and a free C phase. However, the charge irreversible trapped into the amorphous silicon oxycarbide network is also high and therefore the maximum reversible lithium storage capacity of 650mAh g−1 is measured on high-C content SiOCs for which the balance between the two phases, namely the amorphous silicon oxycarbide and the free C phase, is optimal. The high carbon content SiOC show also an excellent cycling stability and performance at high charging/discharging rate: the reversible capacity at 2 C rate being around 200 mAh g−1. Increasing the pyrolysis temperature has an opposite effect on the low-C and high-C materials: for the latter one the reversible capacity decreases following a known trend while the former shows an increase of the reversible capacity which has never been observed before for similar materials.

Freie Schlagworte: SiOC, Li-ion batteries, Polymer derived ceramics, Anodes
Zusätzliche Informationen:

SFB 595 A4

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A4: Neue Funktionskeramiken durch Anionensubstitution in oxidischen Systemen
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 08 Jan 2014 09:54
Letzte Änderung: 07 Jul 2014 11:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen