Pradeep, V. S. ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Sorarù, Gian Domenico (2014)
New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials.
In: Electrochimica Acta, 119
doi: 10.1016/j.electacta.2013.12.037
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Polymer derived silicon oxycarbide (SiOC) materials are prepared by the pyrolysis of preceramic polymers obtained from polyhydridomethylsiloxane using 1,3,5,7-tetramethyl1,3,5,7-tetravinyl cyclotetrasiloxane or divinyl benzene as a cross-linking agent. The pyrolysis is carried out in an inert atmosphere at 1000 and 1300 °C. The carbon content of SiOC is varied by changing the amount of starting precursors maintaining the same O/Si atomic ratio of about 1. Electrochemical measurements are performed in order to evaluate the materials in terms of their application as anodes in Li-ion batteries. Detailed structural characterization study is performed using complementary techniques with the aim of correlating the electrochemical behavior with the structure of the SiOC anodes. Results suggest that SiOC anodes behave as a composite material consisting of a disordered silicon oxycarbide phase having a very high first insertion capacity of ca 1300 mAh g−1 and a free C phase. However, the charge irreversible trapped into the amorphous silicon oxycarbide network is also high and therefore the maximum reversible lithium storage capacity of 650mAh g−1 is measured on high-C content SiOCs for which the balance between the two phases, namely the amorphous silicon oxycarbide and the free C phase, is optimal. The high carbon content SiOC show also an excellent cycling stability and performance at high charging/discharging rate: the reversible capacity at 2 C rate being around 200 mAh g−1. Increasing the pyrolysis temperature has an opposite effect on the low-C and high-C materials: for the latter one the reversible capacity decreases following a known trend while the former shows an increase of the reversible capacity which has never been observed before for similar materials.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2014 |
Autor(en): | Pradeep, V. S. ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Sorarù, Gian Domenico |
Art des Eintrags: | Bibliographie |
Titel: | New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials |
Sprache: | Englisch |
Publikationsjahr: | 10 Februar 2014 |
Verlag: | Elsevier Science Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Electrochimica Acta |
Jahrgang/Volume einer Zeitschrift: | 119 |
DOI: | 10.1016/j.electacta.2013.12.037 |
Kurzbeschreibung (Abstract): | Polymer derived silicon oxycarbide (SiOC) materials are prepared by the pyrolysis of preceramic polymers obtained from polyhydridomethylsiloxane using 1,3,5,7-tetramethyl1,3,5,7-tetravinyl cyclotetrasiloxane or divinyl benzene as a cross-linking agent. The pyrolysis is carried out in an inert atmosphere at 1000 and 1300 °C. The carbon content of SiOC is varied by changing the amount of starting precursors maintaining the same O/Si atomic ratio of about 1. Electrochemical measurements are performed in order to evaluate the materials in terms of their application as anodes in Li-ion batteries. Detailed structural characterization study is performed using complementary techniques with the aim of correlating the electrochemical behavior with the structure of the SiOC anodes. Results suggest that SiOC anodes behave as a composite material consisting of a disordered silicon oxycarbide phase having a very high first insertion capacity of ca 1300 mAh g−1 and a free C phase. However, the charge irreversible trapped into the amorphous silicon oxycarbide network is also high and therefore the maximum reversible lithium storage capacity of 650mAh g−1 is measured on high-C content SiOCs for which the balance between the two phases, namely the amorphous silicon oxycarbide and the free C phase, is optimal. The high carbon content SiOC show also an excellent cycling stability and performance at high charging/discharging rate: the reversible capacity at 2 C rate being around 200 mAh g−1. Increasing the pyrolysis temperature has an opposite effect on the low-C and high-C materials: for the latter one the reversible capacity decreases following a known trend while the former shows an increase of the reversible capacity which has never been observed before for similar materials. |
Freie Schlagworte: | SiOC, Li-ion batteries, Polymer derived ceramics, Anodes |
Zusätzliche Informationen: | SFB 595 A4 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A4: Neue Funktionskeramiken durch Anionensubstitution in oxidischen Systemen 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften Zentrale Einrichtungen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) |
Hinterlegungsdatum: | 08 Jan 2014 09:54 |
Letzte Änderung: | 07 Jul 2014 11:58 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |