TU Darmstadt / ULB / TUbiblio

Molecular dynamics simulations of shock-induced plasticity in tantalum

Tramontina, Diego ; Erhart, Paul ; Germann, Timothy ; Hawreliak, James ; Higginbotham, Andrew ; Park, Nigel ; Ravelo, Ramón ; Stukowski, Alexander ; Suggit, Mathew ; Tang, Yizhe ; Wark, Justin ; Bringa, Eduardo (2014)
Molecular dynamics simulations of shock-induced plasticity in tantalum.
In: High Energy Density Physics, 10
doi: 10.1016/j.hedp.2013.10.007
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We present Non-Equilibrium Molecular Dynamics (NEMD) simulations of shock wave compression along the [001] direction in monocrystalline Tantalum, including pre-existing defects which act as dislocation sources. We use a new Embedded Atom Model (EAM) potential and study the nucleation and evolution of dislocations as a function of shock pressure and loading rise time. We find that the flow stress and dislocation density behind the shock front depend on strain rate. We find excellent agreement with recent experimental results on strength and recovered microstructure, which goes from dislocations to a mixture of dislocations and twins, to twinning dominated response, as the shock pressure increases.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Tramontina, Diego ; Erhart, Paul ; Germann, Timothy ; Hawreliak, James ; Higginbotham, Andrew ; Park, Nigel ; Ravelo, Ramón ; Stukowski, Alexander ; Suggit, Mathew ; Tang, Yizhe ; Wark, Justin ; Bringa, Eduardo
Art des Eintrags: Bibliographie
Titel: Molecular dynamics simulations of shock-induced plasticity in tantalum
Sprache: Englisch
Publikationsjahr: März 2014
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: High Energy Density Physics
Jahrgang/Volume einer Zeitschrift: 10
DOI: 10.1016/j.hedp.2013.10.007
Kurzbeschreibung (Abstract):

We present Non-Equilibrium Molecular Dynamics (NEMD) simulations of shock wave compression along the [001] direction in monocrystalline Tantalum, including pre-existing defects which act as dislocation sources. We use a new Embedded Atom Model (EAM) potential and study the nucleation and evolution of dislocations as a function of shock pressure and loading rise time. We find that the flow stress and dislocation density behind the shock front depend on strain rate. We find excellent agreement with recent experimental results on strength and recovered microstructure, which goes from dislocations to a mixture of dislocations and twins, to twinning dominated response, as the shock pressure increases.

Freie Schlagworte: Tantalum, Molecular dynamics, Shocks
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 19 Nov 2013 09:41
Letzte Änderung: 11 Sep 2014 07:46
PPN:
Sponsoren: D. Tramontina and E.M. Bringa were funded by projects PICT2008-1325 from the ANCyT and 06/M035 from SecTyP-U.N. Cuyo. , A. Higginbotham acknowledges support from AWE., M. Suggit and J.S. Wark acknowledge support from EPSRC under grant P/J017256/1., R. Ravelo acknowledges support from the Air Force Office of Scientific Research under Award FA9550-12-1-0476., Work at Los Alamos was performed under the auspices of the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396. P. Erhart acknowledges support from the Swedish Research Council (VR) and the Area of Advanced Materials at Chalmers.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen