TU Darmstadt / ULB / TUbiblio

Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations

Albe, Karsten ; Ritter, Yvonne ; Şopu, Daniel (2013)
Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations.
In: Mechanics of Materials, 67
doi: 10.1016/j.mechmat.2013.06.004
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We investigate the influence of various microstructural features on the deformation behavior of binary Cu64Zr36 glasses by molecular dynamics computer simulations and discuss how and why the very same modifications established for enhancing the strengths of crystalline materials, namely the insertion of solutes, precipitates and grain boundaries, can be used for tuning the mechanical properties of metallic glasses. First, by testing bulk samples with and without open surfaces under tensile load, we show that the condensation of shear transformation zones into shear bands can occur as heterogeneous but also as a homogeneous nucleation process. Then, the influence of crystalline nanoprecipitates on shear band nucleation and propagation is investigated. Finally, we study the effect of grain size and composition on the deformation behavior of nanoglasses and nanoglass composites. The results reveal that glass–glass interfaces act as structural heterogeneities ,which promote shear band formation and prevent strain localization.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Albe, Karsten ; Ritter, Yvonne ; Şopu, Daniel
Art des Eintrags: Bibliographie
Titel: Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations
Sprache: Englisch
Publikationsjahr: Dezember 2013
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mechanics of Materials
Jahrgang/Volume einer Zeitschrift: 67
DOI: 10.1016/j.mechmat.2013.06.004
Kurzbeschreibung (Abstract):

We investigate the influence of various microstructural features on the deformation behavior of binary Cu64Zr36 glasses by molecular dynamics computer simulations and discuss how and why the very same modifications established for enhancing the strengths of crystalline materials, namely the insertion of solutes, precipitates and grain boundaries, can be used for tuning the mechanical properties of metallic glasses. First, by testing bulk samples with and without open surfaces under tensile load, we show that the condensation of shear transformation zones into shear bands can occur as heterogeneous but also as a homogeneous nucleation process. Then, the influence of crystalline nanoprecipitates on shear band nucleation and propagation is investigated. Finally, we study the effect of grain size and composition on the deformation behavior of nanoglasses and nanoglass composites. The results reveal that glass–glass interfaces act as structural heterogeneities ,which promote shear band formation and prevent strain localization.

Freie Schlagworte: Metallic glasses, Nanoglasses, Shear band formation, Shear transformation zones, Molecular dynamics simulations, Nanoprecipitates in metallic glasses
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 08 Nov 2013 10:10
Letzte Änderung: 08 Nov 2013 10:10
PPN:
Sponsoren: The authors acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) through project Grant Nos. Al-578/13 and Al-578/15. , A DAAD-PPP travel grant is also acknowledged., Computing time was made available by HHLR Frankfurt and Darmstadt. , The authors also gratefully acknowledge the computing time granted by the John von Neumann Institute for Computing (NIC) and provided on the supercomputer JUROPA at Jülich Supercomputing Centre (JSC).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen