TU Darmstadt / ULB / TUbiblio

Continuum modeling of charging process and piezoelectricity of ferroelectrets

Xu, Bai-Xiang ; Seggern, Heinz von ; Zhukov, Sergey ; Gross, Dietmar (2013)
Continuum modeling of charging process and piezoelectricity of ferroelectrets.
In: Journal of Applied Physics, 114 (9)
doi: 10.1063/1.4819441
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Ferroelectrets in the form of electrically charged micro-porous foams exhibit a very large longitudinal piezoelectric coefficient d33. The structure has hence received wide application interests as sensors particularly in acoustic devices. During charging process, electrical breakdown (Paschen breakdown) takes place in the air pores of the foam and introduces free charge pairs. These charges are separated by electrostatic forces and relocated at the interfaces between the polymer and the electrically broken-down medium, where they are trapped quasistatically. The development of this trapped charge density along the interfaces is key for enabling the piezoelectricity of ferroelectrets. In this article, an internal variable based continuum model is proposed to calculate the charge density development at the interfaces, whereas a Maxwell stress based electromechanical model is used for the bulk behavior, i.e., of the polymer and of the medium where the Paschen breakdown takes place. In the modeling, the electrostatic forces between the separated charge pairs are included, as well as the influence of deformation of the solid layers. The material models are implemented in a nonlinear finite element scheme, which allows a detailed analysis of different geometries. A ferroelectret unit with porous expanded polytetrafluoroethylene (ePTFE) surrounded by fluorinated ethylene propylene is studied first. The simulated hysteresis curves of charge density at the surfaces and the calculated longitudinal piezoelectric constant are in good agreement with experimental results. Simulations show a strong dependency of the interface charge development and thus the remnant charges on the thicknesses of the layers and the permittivity of the materials. According to the calculated relation between d33 and the Young's modulus of ePTFE, the value of the Young's modulus of ePTFE is identified to be around 0.75 MPa, which lies well in the predicted range of 0.45 to 0.80 MPa, determined from the dielectric resonance spectra in the work of Zhang et al. [X. Q. Zhang et al., J. Appl. Phys. 108, 064113 (2010)]. To show the potential of the models, it is also applied to simulation of ferroelectrets with a lens shape. The results indicate that the electrical breakdown happens in a sequential manner, and the local piezoelectric coefficient varies with position. Thereby, the middle point on the surface exhibits the maximum d33. The simulation results obtained by the proposed models will provide insight for device optimization.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Xu, Bai-Xiang ; Seggern, Heinz von ; Zhukov, Sergey ; Gross, Dietmar
Art des Eintrags: Bibliographie
Titel: Continuum modeling of charging process and piezoelectricity of ferroelectrets
Sprache: Englisch
Publikationsjahr: 7 September 2013
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 114
(Heft-)Nummer: 9
DOI: 10.1063/1.4819441
Kurzbeschreibung (Abstract):

Ferroelectrets in the form of electrically charged micro-porous foams exhibit a very large longitudinal piezoelectric coefficient d33. The structure has hence received wide application interests as sensors particularly in acoustic devices. During charging process, electrical breakdown (Paschen breakdown) takes place in the air pores of the foam and introduces free charge pairs. These charges are separated by electrostatic forces and relocated at the interfaces between the polymer and the electrically broken-down medium, where they are trapped quasistatically. The development of this trapped charge density along the interfaces is key for enabling the piezoelectricity of ferroelectrets. In this article, an internal variable based continuum model is proposed to calculate the charge density development at the interfaces, whereas a Maxwell stress based electromechanical model is used for the bulk behavior, i.e., of the polymer and of the medium where the Paschen breakdown takes place. In the modeling, the electrostatic forces between the separated charge pairs are included, as well as the influence of deformation of the solid layers. The material models are implemented in a nonlinear finite element scheme, which allows a detailed analysis of different geometries. A ferroelectret unit with porous expanded polytetrafluoroethylene (ePTFE) surrounded by fluorinated ethylene propylene is studied first. The simulated hysteresis curves of charge density at the surfaces and the calculated longitudinal piezoelectric constant are in good agreement with experimental results. Simulations show a strong dependency of the interface charge development and thus the remnant charges on the thicknesses of the layers and the permittivity of the materials. According to the calculated relation between d33 and the Young's modulus of ePTFE, the value of the Young's modulus of ePTFE is identified to be around 0.75 MPa, which lies well in the predicted range of 0.45 to 0.80 MPa, determined from the dielectric resonance spectra in the work of Zhang et al. [X. Q. Zhang et al., J. Appl. Phys. 108, 064113 (2010)]. To show the potential of the models, it is also applied to simulation of ferroelectrets with a lens shape. The results indicate that the electrical breakdown happens in a sequential manner, and the local piezoelectric coefficient varies with position. Thereby, the middle point on the surface exhibits the maximum d33. The simulation results obtained by the proposed models will provide insight for device optimization.

Freie Schlagworte: electrets, electric breakdown, ferroelectric materials, finite element analysis, permittivity, piezoelectricity, polymer foams, Young's modulus
Zusätzliche Informationen:

SFB 595 Cooporation B7, C6

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektronische Materialeigenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung > Teilprojekt B7:Polarisation und Ladung in elektrisch ermüdeten Ferroelektrika
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung > Teilprojekt C6: Mikromechanische Simulationen von Interaktion der Punktdefekte mit Domänenstruktur in Ferroelektrika
Hinterlegungsdatum: 09 Okt 2013 14:12
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen