Tolvanen, Antti ; Albe, Karsten (2013)
Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity.
In: Beilstein Journal of Nanotechnology, 4
doi: 10.3762/bjnano.4.17
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The plastic behaviour of individual Cu crystallites under nanoextrusion is studied by molecular dynamics simulations. Single- crystal Cu fcc nanoparticles are embedded in a spherical force field mimicking the effect of a contracting carbon shell, inducing ressure on the system in the range of gigapascals. The material is extruded from a hole of 1.1–1.6 nm radius under athermal conditions. Simultaneous nucleation of partial dislocations at the extrusion orifice leads to the formation of dislocation dendrites in the particle causing strain hardening and high flow stress of the material. As the extrusion orifice radius is reduced below 1.3 Å we observe a transition from displacive plasticity to solid-state amorphisation.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2013 |
Autor(en): | Tolvanen, Antti ; Albe, Karsten |
Art des Eintrags: | Bibliographie |
Titel: | Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity |
Sprache: | Englisch |
Publikationsjahr: | 7 März 2013 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Beilstein Journal of Nanotechnology |
Jahrgang/Volume einer Zeitschrift: | 4 |
DOI: | 10.3762/bjnano.4.17 |
Kurzbeschreibung (Abstract): | The plastic behaviour of individual Cu crystallites under nanoextrusion is studied by molecular dynamics simulations. Single- crystal Cu fcc nanoparticles are embedded in a spherical force field mimicking the effect of a contracting carbon shell, inducing ressure on the system in the range of gigapascals. The material is extruded from a hole of 1.1–1.6 nm radius under athermal conditions. Simultaneous nucleation of partial dislocations at the extrusion orifice leads to the formation of dislocation dendrites in the particle causing strain hardening and high flow stress of the material. As the extrusion orifice radius is reduced below 1.3 Å we observe a transition from displacive plasticity to solid-state amorphisation. |
Freie Schlagworte: | dislocation interactions, mechanical properties, molecular dynamics, nanoparticle, simulation |
Zusätzliche Informationen: | This article is part of the Thematic Series "Advances in nanomaterials". |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften |
Hinterlegungsdatum: | 27 Jun 2013 08:32 |
Letzte Änderung: | 27 Jun 2013 08:32 |
PPN: | |
Sponsoren: | This work was supported by the Deutsche Forschungsgemeinschaft through project KO 3861/2. , We are grateful for the DAAD travel grant and computational resources provided by the John von Neumann Institute for Computing in Jülich and HRZ at TU Darmstadt. |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |