TU Darmstadt / ULB / TUbiblio

Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity

Tolvanen, Antti ; Albe, Karsten (2013)
Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity.
In: Beilstein Journal of Nanotechnology, 4
doi: 10.3762/bjnano.4.17
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The plastic behaviour of individual Cu crystallites under nanoextrusion is studied by molecular dynamics simulations. Single- crystal Cu fcc nanoparticles are embedded in a spherical force field mimicking the effect of a contracting carbon shell, inducing ressure on the system in the range of gigapascals. The material is extruded from a hole of 1.1–1.6 nm radius under athermal conditions. Simultaneous nucleation of partial dislocations at the extrusion orifice leads to the formation of dislocation dendrites in the particle causing strain hardening and high flow stress of the material. As the extrusion orifice radius is reduced below 1.3 Å we observe a transition from displacive plasticity to solid-state amorphisation.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Tolvanen, Antti ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Plasticity of Cu nanoparticles: Dislocation-dendrite-induced strain hardening and a limit for displacive plasticity
Sprache: Englisch
Publikationsjahr: 7 März 2013
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Beilstein Journal of Nanotechnology
Jahrgang/Volume einer Zeitschrift: 4
DOI: 10.3762/bjnano.4.17
Kurzbeschreibung (Abstract):

The plastic behaviour of individual Cu crystallites under nanoextrusion is studied by molecular dynamics simulations. Single- crystal Cu fcc nanoparticles are embedded in a spherical force field mimicking the effect of a contracting carbon shell, inducing ressure on the system in the range of gigapascals. The material is extruded from a hole of 1.1–1.6 nm radius under athermal conditions. Simultaneous nucleation of partial dislocations at the extrusion orifice leads to the formation of dislocation dendrites in the particle causing strain hardening and high flow stress of the material. As the extrusion orifice radius is reduced below 1.3 Å we observe a transition from displacive plasticity to solid-state amorphisation.

Freie Schlagworte: dislocation interactions, mechanical properties, molecular dynamics, nanoparticle, simulation
Zusätzliche Informationen:

This article is part of the Thematic Series "Advances in nanomaterials".

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 27 Jun 2013 08:32
Letzte Änderung: 27 Jun 2013 08:32
PPN:
Sponsoren: This work was supported by the Deutsche Forschungsgemeinschaft through project KO 3861/2. , We are grateful for the DAAD travel grant and computational resources provided by the John von Neumann Institute for Computing in Jülich and HRZ at TU Darmstadt.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen