TU Darmstadt / ULB / TUbiblio

Reversible solid-state hydrogen-pump driven by magnetostructural transformation in the prototype system La(Fe,Si)13Hy

Krautz, Maria ; Moore, James D. ; Skokov, Konstantin P. ; Liu, Jian ; Teixeira, Cristiano S. ; Schäfer, Rudolf ; Schultz, Ludwig ; Gutfleisch, Oliver (2012)
Reversible solid-state hydrogen-pump driven by magnetostructural transformation in the prototype system La(Fe,Si)13Hy.
In: Journal of Applied Physics, 112 (8)
doi: 10.1063/1.4759438
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

n magnetocaloric La(Fe,Si)13 alloys, it is known that hydrogen addition shifts the magnetic transition temperature TC near room temperature. By partial hydrogen desorption, TC can be adjusted precisely towards the working temperature of a magnetic cooling device. In this work, we studied the stability of partially desorbed LaFe11.6Si1.4Hy and show that the large volume difference of ferro- and para-magnetic phases drives the system from a single phase to a stable two-phase configuration. The hydrogen concentration separates on a macroscopic scale. The phase-coexistence is visualized by Kerr Microscopy. Differential scanning calorimetry measurements show that hydrogen can be reversibly recombined and separated again. We explain the separation by the coexistence of a high-volume ferromagnetic and low-volume paramagnetic phase that can be induced either by temperature or other external stimuli. This phenomenon can be applied to material systems that show a coupling of physical and structural transitions.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Krautz, Maria ; Moore, James D. ; Skokov, Konstantin P. ; Liu, Jian ; Teixeira, Cristiano S. ; Schäfer, Rudolf ; Schultz, Ludwig ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Reversible solid-state hydrogen-pump driven by magnetostructural transformation in the prototype system La(Fe,Si)13Hy
Sprache: Englisch
Publikationsjahr: 2012
Verlag: American Institute of Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 112
(Heft-)Nummer: 8
DOI: 10.1063/1.4759438
Kurzbeschreibung (Abstract):

n magnetocaloric La(Fe,Si)13 alloys, it is known that hydrogen addition shifts the magnetic transition temperature TC near room temperature. By partial hydrogen desorption, TC can be adjusted precisely towards the working temperature of a magnetic cooling device. In this work, we studied the stability of partially desorbed LaFe11.6Si1.4Hy and show that the large volume difference of ferro- and para-magnetic phases drives the system from a single phase to a stable two-phase configuration. The hydrogen concentration separates on a macroscopic scale. The phase-coexistence is visualized by Kerr Microscopy. Differential scanning calorimetry measurements show that hydrogen can be reversibly recombined and separated again. We explain the separation by the coexistence of a high-volume ferromagnetic and low-volume paramagnetic phase that can be induced either by temperature or other external stimuli. This phenomenon can be applied to material systems that show a coupling of physical and structural transitions.

Freie Schlagworte: differential scanning calorimetry, ferromagnetic materials, ferromagnetic-paramagnetic transitions, hydrogen, iron alloys, lanthanum alloys, magnetic transition temperature, magnetocaloric effects, paramagnetic materials, silicon alloys, solid-state phase transformations
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 25 Apr 2013 08:55
Letzte Änderung: 25 Apr 2013 08:55
PPN:
Sponsoren: The research leading to these results has received fund- ing from the European Community’s 7th Framework Programme under Grant Agreement No. 214864 (SSEEC).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen