TU Darmstadt / ULB / TUbiblio

Computational homogenization of materials with small deformation to determine configurational forces

Khalaquzzaman, Md. ; Xu, Bai-Xiang ; Müller, Ralf (2012)
Computational homogenization of materials with small deformation to determine configurational forces.
In: PAMM — Proceedings in Applied Mathematics and Mechanics, 12 (1)
doi: 10.1002/pamm.201210200
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

n this work the mechanical boundary condition for the micro problem in a two-scaled homogenization using a FE2 approach is discussed. The strain tensor is often used in the literature for small deformation problem to determine the boundary conditions for the boundary value problem on the micro level. This strain tensor based boundary condition gives consistent homogenized mechanical quantities, e.g. stress tensor and elasticity tensor, but the present work points out that it leads to unphysical homogenized configurational forces. Instead, we propose a displacement gradient based boundary condition for the micro problem. Results show that the displacement gradient based boundary condition can give not only the consistent homogenized mechanical quantities but also the appropriate homogenized configurational forces. The interpretation of the displacement gradient based boundary condition is discussed.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Khalaquzzaman, Md. ; Xu, Bai-Xiang ; Müller, Ralf
Art des Eintrags: Bibliographie
Titel: Computational homogenization of materials with small deformation to determine configurational forces
Sprache: Englisch
Publikationsjahr: Dezember 2012
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM — Proceedings in Applied Mathematics and Mechanics
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 1
DOI: 10.1002/pamm.201210200
URL / URN: https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.2012102...
Kurzbeschreibung (Abstract):

n this work the mechanical boundary condition for the micro problem in a two-scaled homogenization using a FE2 approach is discussed. The strain tensor is often used in the literature for small deformation problem to determine the boundary conditions for the boundary value problem on the micro level. This strain tensor based boundary condition gives consistent homogenized mechanical quantities, e.g. stress tensor and elasticity tensor, but the present work points out that it leads to unphysical homogenized configurational forces. Instead, we propose a displacement gradient based boundary condition for the micro problem. Results show that the displacement gradient based boundary condition can give not only the consistent homogenized mechanical quantities but also the appropriate homogenized configurational forces. The interpretation of the displacement gradient based boundary condition is discussed.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Zentrale Einrichtungen
Hinterlegungsdatum: 18 Apr 2013 07:35
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Sponsoren: The authors acknowledge financial support of German Research Foundation (DFG) in the framework of Graduate Program GRK-814 and the Center for Mathematical and Computational Modelling (CM) 2 at TU Kaiserslautern
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen