Reinold, Lukas Mirko ; Graczyk-Zajac, Magdalena ; Gao, Yan ; Mera, Gabriela ; Riedel, Ralf (2013)
Carbon-rich SiCN ceramics as high capacity/high stability anode material for lithium-ion batteries.
In: Journal of Power Sources, 236
doi: 10.1016/j.jpowsour.2013.02.046
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Two classes of preceramic polymers, namely polysilazane and polysilylcarbodiimide, with branched and linear molecular structure were pyrolyzed at 1100 °C under argon atmosphere. The resulting nanostructured polymer-derived SiCN ceramics were characterized by means of elemental analysis, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. All investigated ceramics are amorphous and contain a disordered free carbon phase of 2–2.5 nm in size. Electrochemical characterization reveals that the polysilazane-derived electrodes demonstrate higher capacity and stability during subsequent lithium insertion/extraction with different currents than those of the polysilylcarbodiimide-based electrodes. The highest lithium extraction capacity of 724 mA h g−1 is recovered for the sample derived from branched polysilazane whereas the best polysilylcarbodiimide-derived sample recovers 612 mA h g−1. Moreover, the polysilazane-derived samples deliver a higher fraction of capacity recovered below 1.5 V. The electrochemical performance is found to be dependent on the molecular structure (silazane vs. silylcarbodiimide) of the preceramic polymer, while there is no effect associated with the amount of branching (silsesquiazane vs. silazane and silsesquicarbodiimide vs. silylcarbodiimide). The influence of “micropore activity” and oxygen content on the electrochemical performance of polymer-derived silicon carbonitrides is addressed.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2013 |
Autor(en): | Reinold, Lukas Mirko ; Graczyk-Zajac, Magdalena ; Gao, Yan ; Mera, Gabriela ; Riedel, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Carbon-rich SiCN ceramics as high capacity/high stability anode material for lithium-ion batteries |
Sprache: | Englisch |
Publikationsjahr: | 15 August 2013 |
Verlag: | Elsevier Science Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Power Sources |
Jahrgang/Volume einer Zeitschrift: | 236 |
DOI: | 10.1016/j.jpowsour.2013.02.046 |
Kurzbeschreibung (Abstract): | Two classes of preceramic polymers, namely polysilazane and polysilylcarbodiimide, with branched and linear molecular structure were pyrolyzed at 1100 °C under argon atmosphere. The resulting nanostructured polymer-derived SiCN ceramics were characterized by means of elemental analysis, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. All investigated ceramics are amorphous and contain a disordered free carbon phase of 2–2.5 nm in size. Electrochemical characterization reveals that the polysilazane-derived electrodes demonstrate higher capacity and stability during subsequent lithium insertion/extraction with different currents than those of the polysilylcarbodiimide-based electrodes. The highest lithium extraction capacity of 724 mA h g−1 is recovered for the sample derived from branched polysilazane whereas the best polysilylcarbodiimide-derived sample recovers 612 mA h g−1. Moreover, the polysilazane-derived samples deliver a higher fraction of capacity recovered below 1.5 V. The electrochemical performance is found to be dependent on the molecular structure (silazane vs. silylcarbodiimide) of the preceramic polymer, while there is no effect associated with the amount of branching (silsesquiazane vs. silazane and silsesquicarbodiimide vs. silylcarbodiimide). The influence of “micropore activity” and oxygen content on the electrochemical performance of polymer-derived silicon carbonitrides is addressed. |
Freie Schlagworte: | Lithium-ion battery; Polymer-derived ceramic; Silicon carbonitride; Anode; Polysilazane; Polysilylcarbodiimide |
Zusätzliche Informationen: | SFB 595 A4 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A4: Neue Funktionskeramiken durch Anionensubstitution in oxidischen Systemen 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft Zentrale Einrichtungen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) |
Hinterlegungsdatum: | 04 Apr 2013 09:38 |
Letzte Änderung: | 19 Feb 2014 13:21 |
PPN: | |
Sponsoren: | We gratefully acknowledge the financial support of the German Research Foundation (DFG) SPP1473, SFB 595/A4 and Materials World Network Program between DFG and National Science Foundation (NSF)., We gratefully acknowledge the grant funded under the LOEWE-Zentrum AdRIA by the state of Hesse, Germany, and the Fonds der Chemischen Industrie, Frankfurt, Germany. |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |