Renard, Laetitia ; Babot, Odile ; Saadaoui, Hassan ; Fuess, Hartmut ; Broetz, Joachim ; Gurlo, Aleksander ; Arveux, Emmanuel ; Klein, Andreas ; Toupance, Thierry (2012):
Nanoscaled tin dioxide films processed from organotin-based hybrid materials: An organometallic route toward metal oxide gas sensors.
In: Nanoscale, 4 (21), pp. 6806-6813. RSC Publishing, ISSN 2040-3364,
[Article]
Abstract
Nanocrystalline tin dioxide (SnO2) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol–gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30–35 nm thick cassiterite SnO2 films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H2 and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol–gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases
Item Type: | Article |
---|---|
Erschienen: | 2012 |
Creators: | Renard, Laetitia ; Babot, Odile ; Saadaoui, Hassan ; Fuess, Hartmut ; Broetz, Joachim ; Gurlo, Aleksander ; Arveux, Emmanuel ; Klein, Andreas ; Toupance, Thierry |
Title: | Nanoscaled tin dioxide films processed from organotin-based hybrid materials: An organometallic route toward metal oxide gas sensors |
Language: | English |
Abstract: | Nanocrystalline tin dioxide (SnO2) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol–gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30–35 nm thick cassiterite SnO2 films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H2 and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol–gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases |
Journal or Publication Title: | Nanoscale |
Journal volume: | 4 |
Number: | 21 |
Publisher: | RSC Publishing |
Divisions: | 11 Department of Materials and Earth Sciences > Material Science > Dispersive Solids 11 Department of Materials and Earth Sciences > Material Science > Surface Science 11 Department of Materials and Earth Sciences > Material Science > Structure Research 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences |
Date Deposited: | 20 Mar 2013 10:10 |
Official URL: | http://dx.doi.org/10.1039/C2NR31883K |
Identification Number: | doi:10.1039/C2NR31883K |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |