TU Darmstadt / ULB / TUbiblio

Nanoscaled tin dioxide films processed from organotin-based hybrid materials: An organometallic route toward metal oxide gas sensors

Renard, Laetitia ; Babot, Odile ; Saadaoui, Hassan ; Fuess, Hartmut ; Broetz, Joachim ; Gurlo, Aleksander ; Arveux, Emmanuel ; Klein, Andreas ; Toupance, Thierry (2012)
Nanoscaled tin dioxide films processed from organotin-based hybrid materials: An organometallic route toward metal oxide gas sensors.
In: Nanoscale, 4 (21)
doi: 10.1039/C2NR31883K
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Nanocrystalline tin dioxide (SnO2) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol–gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30–35 nm thick cassiterite SnO2 films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H2 and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol–gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Renard, Laetitia ; Babot, Odile ; Saadaoui, Hassan ; Fuess, Hartmut ; Broetz, Joachim ; Gurlo, Aleksander ; Arveux, Emmanuel ; Klein, Andreas ; Toupance, Thierry
Art des Eintrags: Bibliographie
Titel: Nanoscaled tin dioxide films processed from organotin-based hybrid materials: An organometallic route toward metal oxide gas sensors
Sprache: Englisch
Publikationsjahr: 2012
Verlag: RSC Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanoscale
Jahrgang/Volume einer Zeitschrift: 4
(Heft-)Nummer: 21
DOI: 10.1039/C2NR31883K
Kurzbeschreibung (Abstract):

Nanocrystalline tin dioxide (SnO2) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol–gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30–35 nm thick cassiterite SnO2 films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H2 and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol–gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 20 Mär 2013 10:10
Letzte Änderung: 26 Mär 2015 20:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen