Guenther, Gerrit (2012)
Size-dependent High-Temperature Behavior of Bismuth Oxide Nanoparticles.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Oxide nanostrucures show very strong size-dependent changes in their thermal and chemical stability and reactivity. The total energy of nanoparticles (high surface-to-volume ratio) is increased due to the imperfect bonding structure of their surface-affected atoms. This leads to the shifts in the mentioned properties. While this relationship is valid for any kind of inorganic material the degree of these changes depends on the bond-strength and bond-nature of the material at the surface: The higher the surface energy the stronger the size-dependence. These thoughts are demonstrated here by experiments with sized-selected bismuth oxide nanoparticles between 5 and 50 nm. They were synthesized by an aerosol-based evaporation-condensation process with a size-selecting method resulting in monocrystalline, spherical and monodisperse particles. Characterization at room temperature revealed a distorted Beta-Bi2O3 structure. This shows a size-driven thermodynamic crossover in phase stability below a critical particle size. Heating experiments up to the evaporation point were performed inside the synthesis-chamber as well as with in-situ TEM, in-situ XRD and a special membrane-based high-temperature nanocalorimeter. Different atmospheres were used. The results show a pronounced melting point reduction. For example 10 nm particles melted 40% below the bulk in the TEM which is a considerably stronger size-effect than for metals (approx. 5 %). These experimental results were compared with the existing models.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2012 | ||||
Autor(en): | Guenther, Gerrit | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Size-dependent High-Temperature Behavior of Bismuth Oxide Nanoparticles | ||||
Sprache: | Englisch | ||||
Referenten: | Guillon, Prof. Dr. Olivier ; Hahn, Prof. Dr. Horst | ||||
Publikationsjahr: | 10 Oktober 2012 | ||||
Datum der mündlichen Prüfung: | 14 Dezember 2012 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/3302/ | ||||
Kurzbeschreibung (Abstract): | Oxide nanostrucures show very strong size-dependent changes in their thermal and chemical stability and reactivity. The total energy of nanoparticles (high surface-to-volume ratio) is increased due to the imperfect bonding structure of their surface-affected atoms. This leads to the shifts in the mentioned properties. While this relationship is valid for any kind of inorganic material the degree of these changes depends on the bond-strength and bond-nature of the material at the surface: The higher the surface energy the stronger the size-dependence. These thoughts are demonstrated here by experiments with sized-selected bismuth oxide nanoparticles between 5 and 50 nm. They were synthesized by an aerosol-based evaporation-condensation process with a size-selecting method resulting in monocrystalline, spherical and monodisperse particles. Characterization at room temperature revealed a distorted Beta-Bi2O3 structure. This shows a size-driven thermodynamic crossover in phase stability below a critical particle size. Heating experiments up to the evaporation point were performed inside the synthesis-chamber as well as with in-situ TEM, in-situ XRD and a special membrane-based high-temperature nanocalorimeter. Different atmospheres were used. The results show a pronounced melting point reduction. For example 10 nm particles melted 40% below the bulk in the TEM which is a considerably stronger size-effect than for metals (approx. 5 %). These experimental results were compared with the existing models. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Freie Schlagworte: | Models for size-dependent melting point reduction, Pawlow, Buffat, evaporation, phase transformation, solid state phase transition, Phase diagram, oxides, surface enregy, surface stress, nanoparticle, nucleation, synthesis, facets shape, chip calorimetry, nanocalorimetry | ||||
URN: | urn:nbn:de:tuda-tuprints-33022 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
||||
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften 07 Fachbereich Chemie |
||||
Hinterlegungsdatum: | 18 Mär 2013 16:27 | ||||
Letzte Änderung: | 21 Mär 2013 10:20 | ||||
PPN: | |||||
Referenten: | Guillon, Prof. Dr. Olivier ; Hahn, Prof. Dr. Horst | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 14 Dezember 2012 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |