TU Darmstadt / ULB / TUbiblio

Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 under uniaxial stress

Dittmer, Robert ; Webber, Kyle G. ; Aulbach, Emil ; Jo, Wook ; Tan, Xiaoli ; Rödel, Jürgen (2013)
Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 under uniaxial stress.
In: Acta Materialia, 61 (4)
doi: 10.1016/j.actamat.2012.11.012
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The strain and polarization hystereses of lead-free 0.94Bi1/2Na1/2TiO3–0.06BaTiO3 during unipolar electric field loading are obtained from room temperature to 150 °C under uniaxial compressive stress up to 446 MPa. At intermediate temperatures a stress-dependent peak evolves in both the maximum strain and polarization. At 125 °C a large strain with a large-signal piezoelectric coefficient View the MathML source of 884 pm V−1 is observed, which decays upon the application of stress. This behavior is rationalized with a change in the primary strain mechanism from domain switching at low temperatures to a reversible electric field-induced transition from an ergodic relaxor state to a long-range order at high temperatures. Moreover, the energy terms w (the output mechanical work) and eP (the charged electrical energy density) that are related to the deformation and the polarization, respectively, are analyzed and used to define a large-signal efficiency η* = w(w + eP)−1. It is found that η* saturates at ∼150 MPa but decreases with increasing temperature and electric field. It is furthermore observed that notable strains are achieved at stress levels even far beyond the quasi-statically determined blocking force. Therefore, it is proposed that the presented testing procedure is suited to assess the dynamic actuatoric performance of a piezoceramic.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Dittmer, Robert ; Webber, Kyle G. ; Aulbach, Emil ; Jo, Wook ; Tan, Xiaoli ; Rödel, Jürgen
Art des Eintrags: Bibliographie
Titel: Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 under uniaxial stress
Sprache: Englisch
Publikationsjahr: Februar 2013
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 61
(Heft-)Nummer: 4
DOI: 10.1016/j.actamat.2012.11.012
Kurzbeschreibung (Abstract):

The strain and polarization hystereses of lead-free 0.94Bi1/2Na1/2TiO3–0.06BaTiO3 during unipolar electric field loading are obtained from room temperature to 150 °C under uniaxial compressive stress up to 446 MPa. At intermediate temperatures a stress-dependent peak evolves in both the maximum strain and polarization. At 125 °C a large strain with a large-signal piezoelectric coefficient View the MathML source of 884 pm V−1 is observed, which decays upon the application of stress. This behavior is rationalized with a change in the primary strain mechanism from domain switching at low temperatures to a reversible electric field-induced transition from an ergodic relaxor state to a long-range order at high temperatures. Moreover, the energy terms w (the output mechanical work) and eP (the charged electrical energy density) that are related to the deformation and the polarization, respectively, are analyzed and used to define a large-signal efficiency η* = w(w + eP)−1. It is found that η* saturates at ∼150 MPa but decreases with increasing temperature and electric field. It is furthermore observed that notable strains are achieved at stress levels even far beyond the quasi-statically determined blocking force. Therefore, it is proposed that the presented testing procedure is suited to assess the dynamic actuatoric performance of a piezoceramic.

Freie Schlagworte: Lead-free piezoceramics; Uniaxial stress; Electromechanical properties; Actuators; Relaxors
Zusätzliche Informationen:

SFB 595 A1

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektromechanik von Oxiden
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A1: Herstellung keramischer, texturierter Akuatoren mit hoher Dehnung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 29 Jan 2013 11:50
Letzte Änderung: 27 Feb 2014 14:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen