Dittmer, Robert ; Webber, Kyle G. ; Aulbach, Emil ; Jo, Wook ; Tan, Xiaoli ; Rödel, Jürgen (2013)
Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 under uniaxial stress.
In: Acta Materialia, 61 (4)
doi: 10.1016/j.actamat.2012.11.012
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The strain and polarization hystereses of lead-free 0.94Bi1/2Na1/2TiO3–0.06BaTiO3 during unipolar electric field loading are obtained from room temperature to 150 °C under uniaxial compressive stress up to 446 MPa. At intermediate temperatures a stress-dependent peak evolves in both the maximum strain and polarization. At 125 °C a large strain with a large-signal piezoelectric coefficient View the MathML source of 884 pm V−1 is observed, which decays upon the application of stress. This behavior is rationalized with a change in the primary strain mechanism from domain switching at low temperatures to a reversible electric field-induced transition from an ergodic relaxor state to a long-range order at high temperatures. Moreover, the energy terms w (the output mechanical work) and eP (the charged electrical energy density) that are related to the deformation and the polarization, respectively, are analyzed and used to define a large-signal efficiency η* = w(w + eP)−1. It is found that η* saturates at ∼150 MPa but decreases with increasing temperature and electric field. It is furthermore observed that notable strains are achieved at stress levels even far beyond the quasi-statically determined blocking force. Therefore, it is proposed that the presented testing procedure is suited to assess the dynamic actuatoric performance of a piezoceramic.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2013 |
Autor(en): | Dittmer, Robert ; Webber, Kyle G. ; Aulbach, Emil ; Jo, Wook ; Tan, Xiaoli ; Rödel, Jürgen |
Art des Eintrags: | Bibliographie |
Titel: | Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 under uniaxial stress |
Sprache: | Englisch |
Publikationsjahr: | Februar 2013 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Acta Materialia |
Jahrgang/Volume einer Zeitschrift: | 61 |
(Heft-)Nummer: | 4 |
DOI: | 10.1016/j.actamat.2012.11.012 |
Kurzbeschreibung (Abstract): | The strain and polarization hystereses of lead-free 0.94Bi1/2Na1/2TiO3–0.06BaTiO3 during unipolar electric field loading are obtained from room temperature to 150 °C under uniaxial compressive stress up to 446 MPa. At intermediate temperatures a stress-dependent peak evolves in both the maximum strain and polarization. At 125 °C a large strain with a large-signal piezoelectric coefficient View the MathML source of 884 pm V−1 is observed, which decays upon the application of stress. This behavior is rationalized with a change in the primary strain mechanism from domain switching at low temperatures to a reversible electric field-induced transition from an ergodic relaxor state to a long-range order at high temperatures. Moreover, the energy terms w (the output mechanical work) and eP (the charged electrical energy density) that are related to the deformation and the polarization, respectively, are analyzed and used to define a large-signal efficiency η* = w(w + eP)−1. It is found that η* saturates at ∼150 MPa but decreases with increasing temperature and electric field. It is furthermore observed that notable strains are achieved at stress levels even far beyond the quasi-statically determined blocking force. Therefore, it is proposed that the presented testing procedure is suited to assess the dynamic actuatoric performance of a piezoceramic. |
Freie Schlagworte: | Lead-free piezoceramics; Uniaxial stress; Electromechanical properties; Actuators; Relaxors |
Zusätzliche Informationen: | SFB 595 A1 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektromechanik von Oxiden 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe Zentrale Einrichtungen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A1: Herstellung keramischer, texturierter Akuatoren mit hoher Dehnung DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) |
Hinterlegungsdatum: | 29 Jan 2013 11:50 |
Letzte Änderung: | 27 Feb 2014 14:43 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |