TU Darmstadt / ULB / TUbiblio

Universal anisotropic finite-size critical behavior of the two-dimensional Ising model on a strip and of d-dimensional models on films

Kastening, Boris (2012)
Universal anisotropic finite-size critical behavior of the two-dimensional Ising model on a strip and of d-dimensional models on films.
In: Physical Review E, 86 (4)
doi: 10.1103/PhysRevE.86.041105
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Anisotropy effects on the finite-size critical behavior of a two-dimensional Ising model on a general triangular lattice in an infinite-strip geometry with periodic, antiperiodic, and free boundary conditions (bc) in the finite direction are investigated. Exact results are obtained for the scaling functions of the finite-size contributions to the free energy density. With ξ> the largest and ξ< the smallest bulk correlation length at a given temperature near criticality, we find that the dependence of these functions on the ratio ξ</ξ> and on the angle parametrizing the orientation of the correlation volume is of geometric nature. Since the scaling functions are independent of the particular microscopic realization of the anisotropy within the two-dimensional Ising model, our results provide a limited verification of universality. We explain our observations by considering finite-size scaling of free energy densities of general weakly anisotropic models on a d-dimensional film (i.e., in an L×∞d−1 geometry) with bc in the finite direction that are invariant under a shear transformation relating the anisotropic and isotropic cases. This allows us to relate free energy scaling functions in the presence of an anisotropy to those of the corresponding isotropic system. We interpret our results as a simple and transparent case of anisotropic universality, where, compared to the isotropic case, scaling functions depend additionally on the shape and orientation of the correlation volume. We conjecture that this universality extends to cases where the geometry and/or the bc are not invariant under the shear transformation and argue in favor of validity of two-scale factor universality for weakly anisotropic systems.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Kastening, Boris
Art des Eintrags: Bibliographie
Titel: Universal anisotropic finite-size critical behavior of the two-dimensional Ising model on a strip and of d-dimensional models on films
Sprache: Englisch
Publikationsjahr: 2 Oktober 2012
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review E
Jahrgang/Volume einer Zeitschrift: 86
(Heft-)Nummer: 4
DOI: 10.1103/PhysRevE.86.041105
Kurzbeschreibung (Abstract):

Anisotropy effects on the finite-size critical behavior of a two-dimensional Ising model on a general triangular lattice in an infinite-strip geometry with periodic, antiperiodic, and free boundary conditions (bc) in the finite direction are investigated. Exact results are obtained for the scaling functions of the finite-size contributions to the free energy density. With ξ> the largest and ξ< the smallest bulk correlation length at a given temperature near criticality, we find that the dependence of these functions on the ratio ξ</ξ> and on the angle parametrizing the orientation of the correlation volume is of geometric nature. Since the scaling functions are independent of the particular microscopic realization of the anisotropy within the two-dimensional Ising model, our results provide a limited verification of universality. We explain our observations by considering finite-size scaling of free energy densities of general weakly anisotropic models on a d-dimensional film (i.e., in an L×∞d−1 geometry) with bc in the finite direction that are invariant under a shear transformation relating the anisotropic and isotropic cases. This allows us to relate free energy scaling functions in the presence of an anisotropy to those of the corresponding isotropic system. We interpret our results as a simple and transparent case of anisotropic universality, where, compared to the isotropic case, scaling functions depend additionally on the shape and orientation of the correlation volume. We conjecture that this universality extends to cases where the geometry and/or the bc are not invariant under the shear transformation and argue in favor of validity of two-scale factor universality for weakly anisotropic systems.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 09 Jan 2013 09:41
Letzte Änderung: 05 Mär 2013 10:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen