TU Darmstadt / ULB / TUbiblio

Optimal working regime of lead–zirconate–titanate for actuation applications

Dittmer, Robert ; Webber, Kyle G. ; Aulbach, Emil ; Jo, Wook ; Tan, Xiaoli ; Rödel, Jürgen (2013)
Optimal working regime of lead–zirconate–titanate for actuation applications.
In: Sensors and Actuators A: Physical, 189
doi: 10.1016/j.sna.2012.09.015
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The large-signal unipolar behavior of PZT is characterized under combined electrical, thermal, and mechanical loading. Maximum strain Smax and polarization Pmax feature a pronounced sensitivity on stress with a field-dependent peak evolving at around −50 MPa that is associated with enhanced non-180° domain switching. As notable strains are achieved in excess of the quasi-statically measured blocking stress, it is suggested that the testing procedure presented within this work is suited to supplement blocking force measurements in order to comprehensively evaluate the electromechanical performance of a piezoceramic. With the suppression of non-180° domain switching at high stress levels, Smax(σ) decreases at a faster rate than Pmax(σ). Accordingly, the electrostrictive coefficient Q11 is shown to be stress-dependent. This observation is rationalized with the stress-dependent change of domain processes. It is furthermore found that Q11 features a notable dependence on temperature, increasing from 0.018 m4 C−2 at 25 °C to 0.028 m4 C−2 at 150 °C under zero-stress. To assess the actuatoric efficiency, a novel figure of merit η* is defined to quantify the fraction of input energy utilized for mechanical work.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Dittmer, Robert ; Webber, Kyle G. ; Aulbach, Emil ; Jo, Wook ; Tan, Xiaoli ; Rödel, Jürgen
Art des Eintrags: Bibliographie
Titel: Optimal working regime of lead–zirconate–titanate for actuation applications
Sprache: Englisch
Publikationsjahr: 15 Januar 2013
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sensors and Actuators A: Physical
Jahrgang/Volume einer Zeitschrift: 189
DOI: 10.1016/j.sna.2012.09.015
Kurzbeschreibung (Abstract):

The large-signal unipolar behavior of PZT is characterized under combined electrical, thermal, and mechanical loading. Maximum strain Smax and polarization Pmax feature a pronounced sensitivity on stress with a field-dependent peak evolving at around −50 MPa that is associated with enhanced non-180° domain switching. As notable strains are achieved in excess of the quasi-statically measured blocking stress, it is suggested that the testing procedure presented within this work is suited to supplement blocking force measurements in order to comprehensively evaluate the electromechanical performance of a piezoceramic. With the suppression of non-180° domain switching at high stress levels, Smax(σ) decreases at a faster rate than Pmax(σ). Accordingly, the electrostrictive coefficient Q11 is shown to be stress-dependent. This observation is rationalized with the stress-dependent change of domain processes. It is furthermore found that Q11 features a notable dependence on temperature, increasing from 0.018 m4 C−2 at 25 °C to 0.028 m4 C−2 at 150 °C under zero-stress. To assess the actuatoric efficiency, a novel figure of merit η* is defined to quantify the fraction of input energy utilized for mechanical work.

Freie Schlagworte: Lead–zirconate–titanate; PZT; Stress dependence; Working regime; Temperature dependence; Actuator; Electrostriction; Polarization losses; Efficiency
Zusätzliche Informationen:

SFB 595 A1

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Elektromechanik von Oxiden
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A1: Herstellung keramischer, texturierter Akuatoren mit hoher Dehnung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 27 Nov 2012 10:41
Letzte Änderung: 27 Feb 2014 14:44
PPN:
Sponsoren: This work was financially supported by the Deutsche Forschungsgemeinschaft DFG under SFB595/A1.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen