TU Darmstadt / ULB / TUbiblio

Untwisting the Campbell diagrams of weakly anisotropic rotor systems

Kirillov, Oleg N. (2009)
Untwisting the Campbell diagrams of weakly anisotropic rotor systems.
In: Journal of Physics: Conference Series, 181 (1)
doi: 10.1088/1742-6596/181/1/012023
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Typ des Eintrags: Artikel
Erschienen: 2009
Autor(en): Kirillov, Oleg N.
Art des Eintrags: Bibliographie
Titel: Untwisting the Campbell diagrams of weakly anisotropic rotor systems
Sprache: Englisch
Publikationsjahr: 2009
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Conference Series
Jahrgang/Volume einer Zeitschrift: 181
(Heft-)Nummer: 1
DOI: 10.1088/1742-6596/181/1/012023
Zugehörige Links:
Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

A brake can be modeled as an axi-symmetric rotor perturbed by dissipative, conservative, and non-conservative positional forces originated at the frictional contact with the anisotropic stator. The Campbell diagram of the unperturbed system is a mesh-like structure in the frequency-speed plane with double eigenfrequencies at the nodes. The diagram is convenient for the analysis of the traveling waves in the rotating elastic continuum. Computing sensitivities of the doublets we find that at every particular node the untwisting of the mesh into the branches of complex eigenvalues is generically determined by only four 2×2 sub-blocks of the perturbing matrix. Selection of the unstable modes that cause self-excited vibrations in the subcritical speed range, is governed by the exceptional points at the corners of the singular eigenvalue surface–`double coffee-filter'–which is typical also in the problems of electromagnetic and acoustic wave propagation in non-rotating anisotropic chiral media. As a mechanical example a model of a rotating shaft is studied in detail.

Englisch
Schlagworte:
Einzelne SchlagworteSprache
nicht bekanntEnglisch
ID-Nummer: Artikel-ID: 012023
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Dynamik und Schwingungen
Hinterlegungsdatum: 19 Sep 2012 14:20
Letzte Änderung: 31 Jan 2024 06:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen