TU Darmstadt / ULB / TUbiblio

Singularities on the boundary of the stability domain near 1:1-resonance

Hoveijn, I. ; Kirillov, O. N. (2010)
Singularities on the boundary of the stability domain near 1:1-resonance.
In: Journal of Differential Equations, 248 (10)
doi: 10.1016/j.jde.2009.12.004
Artikel, Bibliographie

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Hoveijn, I. ; Kirillov, O. N.
Art des Eintrags: Bibliographie
Titel: Singularities on the boundary of the stability domain near 1:1-resonance
Sprache: Englisch
Publikationsjahr: 15 Mai 2010
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Differential Equations
Jahrgang/Volume einer Zeitschrift: 248
(Heft-)Nummer: 10
DOI: 10.1016/j.jde.2009.12.004
Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

We study the linear differential equation x˙ = Lx in 1:1-resonance. That is, x ∈ R4 and L is 4 × 4 matrix with a semi-simple double pair of imaginary eigenvalues (iβ, −iβ, iβ, −iβ). We wish to find all perturbations of this linear system such that the perturbed system is stable. Since linear differential equations are in one-to-one corre- spondence with linear maps we translate this problem to gl(4, R). In this setting our aim is to determine the stability domain and the singularities of its boundary. The dimension of gl(4, R) is 16, therefore we first reduce the dimension as far as possible. Here we use a versal unfolding of L, i.e. a transverse section of the or- bit of L under the adjoint action of Gl(4, R). Repeating a similar procedure in the versal unfolding we are able to reduce the di- mension to 4. A 3-sphere in this 4-dimensional space contains all information about the neighborhood of L in gl(4, R). Considering the 3-sphere as two 3-discs glued smoothly along their common boundary we find that the boundary of the stability domain is con- tained in two right conoids, one in each 3-disc. The singularities of this surface are transverse self-intersections, Whitney umbrel- las and an intersection of self-intersections where the surface has a self-tangency. A Whitney stratification of the 3-sphere such that the eigenvalue configurations of corresponding matrices are con- stant on strata allows us to describe the neighborhood of L and in particular identify the stability domain.

Englisch
Schlagworte:
Einzelne SchlagworteSprache
Stability domain, 1:1-resonance, Centralizer unfolding, Whitney stratification, Whitney umbrellaEnglisch
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau > Dynamik und Schwingungen
16 Fachbereich Maschinenbau
Hinterlegungsdatum: 19 Sep 2012 14:09
Letzte Änderung: 05 Mär 2013 10:03
PPN:
Schlagworte:
Einzelne SchlagworteSprache
Stability domain, 1:1-resonance, Centralizer unfolding, Whitney stratification, Whitney umbrellaEnglisch
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen