TU Darmstadt / ULB / TUbiblio

Low order model for the dynamics of bi-stable composite plates

Arrieta, A. F. ; Spelsberg-Korspeter, G. ; Hagedorn, P. ; Neild, S. A. ; Wagg, D. J. (2011)
Low order model for the dynamics of bi-stable composite plates.
In: Journal of Intelligent Material Systems and Structures, 22 (17)
doi: 10.1177/1045389X11422104
Artikel, Bibliographie

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Arrieta, A. F. ; Spelsberg-Korspeter, G. ; Hagedorn, P. ; Neild, S. A. ; Wagg, D. J.
Art des Eintrags: Bibliographie
Titel: Low order model for the dynamics of bi-stable composite plates
Sprache: Englisch
Publikationsjahr: November 2011
Verlag: SAGE Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Intelligent Material Systems and Structures
Jahrgang/Volume einer Zeitschrift: 22
(Heft-)Nummer: 17
DOI: 10.1177/1045389X11422104
Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

This article presents the derivation and validation of a low order model for the non-linear dynamics of cross-ply bi-stable composite plates focusing on the response of one stable state. The Rayleigh–Ritz method is used to solve the associated linear problem to obtain valuable theoretical insight into how to formulate an approximate non-linear dynamic model. This allows us to follow a Galerkin approach projecting the solution of the non-linear problem onto the mode shapes of the linear problem. The order of the non-linear model is reduced using theoretical results from the linear solution yielding a low order model. The dynamic response of a bi-stable plate specimen is studied to simplify the model further by only keeping the non-linear terms leading to observed oscillations. Simulations for the dynamic response using the derived model are presented showing excellent agreement with the experimentally observed behaviour. Additionally, deflection shapes are measured and compared with the calculated mode shapes, showing good agreement.

Englisch
Schlagworte:
Einzelne SchlagworteSprache
bi-stable composites, morphing structures, low order modelling, deflection shapesEnglisch
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Dynamik und Schwingungen
Hinterlegungsdatum: 19 Sep 2012 13:54
Letzte Änderung: 05 Mär 2013 10:03
PPN:
Schlagworte:
Einzelne SchlagworteSprache
bi-stable composites, morphing structures, low order modelling, deflection shapesEnglisch
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen