Weil, Philipp (2012)
Koevolution in molekularen Komplexen.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Der Bereich der molekularen Evolution beschäftigt sich mit der Untersuchung der Änderung der Primärsequenz und den durch Sequenzänderung vermittelten Selektionsvorteil des molekularen Phänotyps. Dabei kann sich die molekulare (Ko)evolution zum Beispiel in kompensatorischen Mutationen manifestieren, die durch den Selektionsdruck an den beobachteten Positionen favorisiert wird. Mit dem Verständnis über Prozesse struktur- und dynamikrelevanter Mutationen können biochemische Interaktionen identifiziert werden, die evolutionär wichtig sind. Besondere Bedeutung gewinnen solche Erkenntnisse im Bereich der Resistenzentwicklung von Medikamenten, da die oben genannten molekularen Koevolutionsvorgänge Randbedingungen an die prinzipielle Evolvierbarkeit von Resistenzen stellen. So konnte zum Beispiel ein intramolekulares Cluster innerhalb der HIV-1 Protease identifiziert werden, das sich bei der Behandlung der Patienten durch Proteaseinhibitoren etabliert hat. In dieser Arbeit sollen verschiedene koevolutionäre Prozesse in unterschiedlichen Molekülen (Ribosom [Kapitel 3] und der HIV-1 Protease [Kapitel 4]) untersucht werden. In Verbindung mit der biophysikalischen Annotation des Ribosoms (Kapitel 5) soll eine differenziertere Analyse der Koevolution ermöglicht werden. Während dieser Arbeit hat sich als eine der größten Herausforderungen die Analyse von koevolutionären Datenmengen ergeben. Wie in Kapitel 2 erarbeitet wird, dient die so genannte mutual information (MI) zur Quantifizierung der Koevolution. Die Berechnung der MI führt aber gleichzeitig zu Datenvolumina von 10^4 und mehr Größen, während gleichzeitig phylogenetische Effekte eine nicht minder große Herausforderung darstellen. Als ein viel versprechender Weg solche Probleme anzugehen werden seit einiger Zeit in der Informatik so genannte Visual Analytics-Techniken diskutiert und entwickelt. Diese Idee aufgreifend wird in Kapitel 6 eine entsprechende Software vorgestellt.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2012 | ||||
Autor(en): | Weil, Philipp | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Koevolution in molekularen Komplexen | ||||
Sprache: | Deutsch | ||||
Referenten: | Hamacher, Prof. Dr. Kay ; Thiel, Prof. Dr. Gerhard | ||||
Publikationsjahr: | 8 August 2012 | ||||
Datum der mündlichen Prüfung: | 18 Juli 2012 | ||||
URL / URN: | urn:nbn:de:tuda-tuprints-30731 | ||||
Kurzbeschreibung (Abstract): | Der Bereich der molekularen Evolution beschäftigt sich mit der Untersuchung der Änderung der Primärsequenz und den durch Sequenzänderung vermittelten Selektionsvorteil des molekularen Phänotyps. Dabei kann sich die molekulare (Ko)evolution zum Beispiel in kompensatorischen Mutationen manifestieren, die durch den Selektionsdruck an den beobachteten Positionen favorisiert wird. Mit dem Verständnis über Prozesse struktur- und dynamikrelevanter Mutationen können biochemische Interaktionen identifiziert werden, die evolutionär wichtig sind. Besondere Bedeutung gewinnen solche Erkenntnisse im Bereich der Resistenzentwicklung von Medikamenten, da die oben genannten molekularen Koevolutionsvorgänge Randbedingungen an die prinzipielle Evolvierbarkeit von Resistenzen stellen. So konnte zum Beispiel ein intramolekulares Cluster innerhalb der HIV-1 Protease identifiziert werden, das sich bei der Behandlung der Patienten durch Proteaseinhibitoren etabliert hat. In dieser Arbeit sollen verschiedene koevolutionäre Prozesse in unterschiedlichen Molekülen (Ribosom [Kapitel 3] und der HIV-1 Protease [Kapitel 4]) untersucht werden. In Verbindung mit der biophysikalischen Annotation des Ribosoms (Kapitel 5) soll eine differenziertere Analyse der Koevolution ermöglicht werden. Während dieser Arbeit hat sich als eine der größten Herausforderungen die Analyse von koevolutionären Datenmengen ergeben. Wie in Kapitel 2 erarbeitet wird, dient die so genannte mutual information (MI) zur Quantifizierung der Koevolution. Die Berechnung der MI führt aber gleichzeitig zu Datenvolumina von 10^4 und mehr Größen, während gleichzeitig phylogenetische Effekte eine nicht minder große Herausforderung darstellen. Als ein viel versprechender Weg solche Probleme anzugehen werden seit einiger Zeit in der Informatik so genannte Visual Analytics-Techniken diskutiert und entwickelt. Diese Idee aufgreifend wird in Kapitel 6 eine entsprechende Software vorgestellt. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie | ||||
Fachbereich(e)/-gebiet(e): | 10 Fachbereich Biologie ?? fb10_mikrobiologie ?? |
||||
Hinterlegungsdatum: | 13 Aug 2012 10:22 | ||||
Letzte Änderung: | 05 Mär 2013 10:02 | ||||
PPN: | |||||
Referenten: | Hamacher, Prof. Dr. Kay ; Thiel, Prof. Dr. Gerhard | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 18 Juli 2012 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |