TU Darmstadt / ULB / TUbiblio

The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation

Cherkashinin, Gennady and Nikolowski, Kristian and Ehrenberg, Helmut and Jacke, Susanne and Dimesso, Lucangelo and Jaegermann, Wolfram (2012):
The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation.
In: Physical Chemistry Chemical Physics, pp. 12321-12331, 14, (35), ISSN 1463-9076, [Online-Edition: http://dx.doi.org/10.1039/C2CP41134B],
[Article]

Abstract

The stability of the valence state of the 3d transition metal ions and the stoichiometry of LiMO2 (M=Co, Ni, Mn) layered oxides at the surface-electrolyte interface plays a crucial role for energy storage applications. The surface oxidation/reduction of the cations caused by the contact of the solids to air or to the electrolyte results in the blocking of the Li-transport through the interface that leads to the fast batteries deterioration. The influence of the end-of-charge voltage on the chemical composition and the oxidation state of 3d transition metal ions, as well as the stability of the solid-electrolyte interface (SEI), which is formed during the electrochemical Li-deintercalation/intercalation of the LiCoO2 (LCO) and Li(Ni,Mn,Co)O2 (LNMCO), have been investigated by X-ray photoelectron spectroscopy (XPS). While the chemical composition of SEI is similar for both layered oxide surfaces, the electrochemical cycling to some critical voltage values lead to the disappearance of the SEI layer. The breaking and the weakening of the chemical bonds in the chemical compounds of the SEI is assigned with the lattice stress induced by the lattice expansion which is stronger at the higher end-of charge voltages. By the analysis of the shape of the 2p and 3s photoelectron emissions we show that the formation of the SEI layer correlates with the partial reduction of the trivalent Co ions at the electrolyte-LCO interface and amount of the Co2+ ions is increased as the SEI vanishes. In opposite, the Mn4+, Co3+ and Ni2+ ions at the SEI-LNMCO interface are stable under the electrochemical cycling to higher end-of-charge voltage. A correlation between deterioration of the LCO and LNMCO batteries and the change of electronic structure at the surface/interface after the electrochemical cycling has been found. The dissolution of the SEI layer might be the reason for the fast deterioration of the Li-ion batteries.

Item Type: Article
Erschienen: 2012
Creators: Cherkashinin, Gennady and Nikolowski, Kristian and Ehrenberg, Helmut and Jacke, Susanne and Dimesso, Lucangelo and Jaegermann, Wolfram
Title: The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation
Language: English
Abstract:

The stability of the valence state of the 3d transition metal ions and the stoichiometry of LiMO2 (M=Co, Ni, Mn) layered oxides at the surface-electrolyte interface plays a crucial role for energy storage applications. The surface oxidation/reduction of the cations caused by the contact of the solids to air or to the electrolyte results in the blocking of the Li-transport through the interface that leads to the fast batteries deterioration. The influence of the end-of-charge voltage on the chemical composition and the oxidation state of 3d transition metal ions, as well as the stability of the solid-electrolyte interface (SEI), which is formed during the electrochemical Li-deintercalation/intercalation of the LiCoO2 (LCO) and Li(Ni,Mn,Co)O2 (LNMCO), have been investigated by X-ray photoelectron spectroscopy (XPS). While the chemical composition of SEI is similar for both layered oxide surfaces, the electrochemical cycling to some critical voltage values lead to the disappearance of the SEI layer. The breaking and the weakening of the chemical bonds in the chemical compounds of the SEI is assigned with the lattice stress induced by the lattice expansion which is stronger at the higher end-of charge voltages. By the analysis of the shape of the 2p and 3s photoelectron emissions we show that the formation of the SEI layer correlates with the partial reduction of the trivalent Co ions at the electrolyte-LCO interface and amount of the Co2+ ions is increased as the SEI vanishes. In opposite, the Mn4+, Co3+ and Ni2+ ions at the SEI-LNMCO interface are stable under the electrochemical cycling to higher end-of-charge voltage. A correlation between deterioration of the LCO and LNMCO batteries and the change of electronic structure at the surface/interface after the electrochemical cycling has been found. The dissolution of the SEI layer might be the reason for the fast deterioration of the Li-ion batteries.

Journal or Publication Title: Physical Chemistry Chemical Physics
Volume: 14
Number: 35
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences > Material Science > Surface Science
Zentrale Einrichtungen
Exzellenzinitiative > Clusters of Excellence > Center of Smart Interfaces (CSI)
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis > Subproject A3: Boundary layers and thin films of ionic conductors: Electronic structure, electrochemical potentials, defect formation and degradation mechanisms
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > B - Characterisation
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > B - Characterisation > Subproject B4: In situ investigations of the degradation of intercalation batteries and their modelling
Exzellenzinitiative
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
DFG-Collaborative Research Centres (incl. Transregio)
Exzellenzinitiative > Clusters of Excellence
Date Deposited: 24 Jul 2012 11:29
Official URL: http://dx.doi.org/10.1039/C2CP41134B
Additional Information:

SFB 595 Cooperation A3, B4

Identification Number: doi:10.1039/C2CP41134B
Export:

Optionen (nur für Redakteure)

View Item View Item