TU Darmstadt / ULB / TUbiblio

Temperature-Dependent Properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 Lead-Free Piezoceramics

Wang, Ke ; Hussain, Ali ; Jo, Wook ; Rödel, Jürgen (2012)
Temperature-Dependent Properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 Lead-Free Piezoceramics.
In: Journal of the American Ceramic Society, 95 (7)
doi: 10.1111/j.1551-2916.2012.05162.x
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Ferroelectric and piezoelectric properties of SrTiO3–modified (0, 3, and 5 mol%) 0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3 lead-free piezoceramics were investigated as a model system in an attempt to lay a guideline for developing lead-free piezoelectric materials with large strains. Two guidelines, one for the choice of base composition and the other for the choice of chemical modifiers, were assumed from our current understanding of the mechanism involved. Dielectric permittivity of both poled and unpoled samples was measured and compared, leading to a conclusion that the frequency-independent anomaly (TF-R) is the temperature at which induced-ferroelectric order converts back to relaxor state. The correlation between TF-R and depolarization temperature (Td) was shown by the comparison with Td determined by thermally stimulated depolarization current measurements, whereas the ferroelectric-relaxor transition temperature TF-R was determined using poled samples. A large unipolar strain of 0.36% (Smax/Emax = 600 pm/V) at a driving field of 6 kV/mm was obtained at room temperature for a SrTiO3 content of 5 mol%. Temperature-dependent measurements of both polarization and strain from room temperature to 200°C revealed that the origin of the large strain is due to a reversible field-induced ergodic relaxor-to-ferroelectric phase transformation.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Wang, Ke ; Hussain, Ali ; Jo, Wook ; Rödel, Jürgen
Art des Eintrags: Bibliographie
Titel: Temperature-Dependent Properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 Lead-Free Piezoceramics
Sprache: Englisch
Publikationsjahr: Juli 2012
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 95
(Heft-)Nummer: 7
DOI: 10.1111/j.1551-2916.2012.05162.x
Kurzbeschreibung (Abstract):

Ferroelectric and piezoelectric properties of SrTiO3–modified (0, 3, and 5 mol%) 0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3 lead-free piezoceramics were investigated as a model system in an attempt to lay a guideline for developing lead-free piezoelectric materials with large strains. Two guidelines, one for the choice of base composition and the other for the choice of chemical modifiers, were assumed from our current understanding of the mechanism involved. Dielectric permittivity of both poled and unpoled samples was measured and compared, leading to a conclusion that the frequency-independent anomaly (TF-R) is the temperature at which induced-ferroelectric order converts back to relaxor state. The correlation between TF-R and depolarization temperature (Td) was shown by the comparison with Td determined by thermally stimulated depolarization current measurements, whereas the ferroelectric-relaxor transition temperature TF-R was determined using poled samples. A large unipolar strain of 0.36% (Smax/Emax = 600 pm/V) at a driving field of 6 kV/mm was obtained at room temperature for a SrTiO3 content of 5 mol%. Temperature-dependent measurements of both polarization and strain from room temperature to 200°C revealed that the origin of the large strain is due to a reversible field-induced ergodic relaxor-to-ferroelectric phase transformation.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 09 Jul 2012 12:37
Letzte Änderung: 05 Mär 2013 10:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen