TU Darmstadt / ULB / TUbiblio

Computationally Efficient Spatial and Cooperative Diversity Techniques for Wireless Communication Networks

Alabed, Samer (2012)
Computationally Efficient Spatial and Cooperative Diversity Techniques for Wireless Communication Networks.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung

Kurzbeschreibung (Abstract)

Several techniques are recently proposed to improve the robustness of wireless communication systems, increase the throughput, and overcome channel impairments such as multi-user interference and multi-path fading. Among them, using multiple-antennas is one of the most remarkable techniques as it allows to improve the error performance and the data rate without an increase in the frequency bandwidth or transmitted power. However, multiple-antenna techniques are not applicable in all ad-hoc networks due to hardware constraints. As an alternative, cooperative diversity techniques have been proposed to achieve gains similar to that of multiple-antenna techniques. In this thesis, we develop computationally efficient multiple-antenna and cooperative diversity techniques for wireless communication networks which offer an improved tradeoff between computational complexity, error performance, and data rate. We first consider space-time block coding for conventional multiple antenna systems. We propose a low complexity decoder for quasi-orthogonal space-time block codes. Both the coherent and non-coherent implementations of this decoder are developed. The proposed decoder can provide a substantially improved tradeoff between the complexity and performance as compared to state-of-the-art decoding techniques. The proposed decoder enjoys a nearly linear decoding complexity and it approximately achieves the optimal performance of the maximum-likelihood decoder. Recently, cooperative diversity strategies for two-way wireless relay networks have been proposed using the amplify-and-forward and the decode-and-forward protocols. Although the simultaneous bidirectional decode and-forward transmission has been shown to outperform other decode-and-forward strategies, it has mainly two disadvantages: high relay decoding complexity and the impossibility to use the direct link between the communicating terminals. In this thesis, we propose novel coherent and non-coherent simultaneous bidirectional decode-and-forward distributed space-time coding strategies that provide a higher coding gain and enjoy a substantially lower relay decoding complexity than the state-of-the-art strategies at the same symbol rate. In the proposed strategies, the communicating terminals can benefit from the direct link which is not exploited by other existing simultaneous bidirectional transmission strategies. Various differential distributed space-time coding strategies for two-way relay networks using the amplify-and-forward protocol which do not require channel state information either at the relays or at the terminals have been proposed. The simultaneous two-way differential distributed space-time coding strategy using the amplify-and-forward protocol has been shown to outperform the conventional differential four-phase strategy in the low to medium signal-to-noise ratio region. However, there are mainly three disadvantages associated with it: I) the relay power wasted for transmitting redundant information at either side, ii) the direct link between the communicating terminals can not be used and iii) the considerable bias at high signal-to-noise ratio. In this work, amplify-and-forward differential distributed space-time coding strategies for two-way wireless relay networks are developed, that provide a higher coding gain than the state-of-the art strategies. In the proposed strategies, the relays do not waste power to transmit redundant information at either side and the communicating terminals can fully use the direct link between them. Although differential distributed space-time coding strategies do not require channel state information at the relays, they are associated with a low error performance, a high latency, and decoding complexity. Another strategy used in relay networks relies on coherent processing of the relay signals using distributed beamforming techniques. This strategy enjoys a good error performance and low decoding complexity while offering an optimal decoding delay. However, a common requirement in distributed beamforming is the availability of perfect channel state information at all nodes. To avoid this requirement, we introduce a distributed differential beamforming strategy that combines the differential diversity and the distributed beamforming strategy while retaining the benefits of both approaches. The proposed strategy does not require channel state information at any node and enjoys a good error performance, optimal delay, and low decoding complexity.

Typ des Eintrags: Dissertation
Erschienen: 2012
Autor(en): Alabed, Samer
Art des Eintrags: Erstveröffentlichung
Titel: Computationally Efficient Spatial and Cooperative Diversity Techniques for Wireless Communication Networks
Sprache: Englisch
Referenten: Pesavento, Prof. Dr.- Marius ; Khalaj, Prof. Dr.- Babak
Publikationsjahr: 16 Mai 2012
Ort: Darmstadt, Germany
Verlag: TU Darmstadt
Kollation: xvii, 139 p.
Datum der mündlichen Prüfung: 12 Mai 2012
URL / URN: urn:nbn:de:tuda-tuprints-29844
Zugehörige Links:
Kurzbeschreibung (Abstract):

Several techniques are recently proposed to improve the robustness of wireless communication systems, increase the throughput, and overcome channel impairments such as multi-user interference and multi-path fading. Among them, using multiple-antennas is one of the most remarkable techniques as it allows to improve the error performance and the data rate without an increase in the frequency bandwidth or transmitted power. However, multiple-antenna techniques are not applicable in all ad-hoc networks due to hardware constraints. As an alternative, cooperative diversity techniques have been proposed to achieve gains similar to that of multiple-antenna techniques. In this thesis, we develop computationally efficient multiple-antenna and cooperative diversity techniques for wireless communication networks which offer an improved tradeoff between computational complexity, error performance, and data rate. We first consider space-time block coding for conventional multiple antenna systems. We propose a low complexity decoder for quasi-orthogonal space-time block codes. Both the coherent and non-coherent implementations of this decoder are developed. The proposed decoder can provide a substantially improved tradeoff between the complexity and performance as compared to state-of-the-art decoding techniques. The proposed decoder enjoys a nearly linear decoding complexity and it approximately achieves the optimal performance of the maximum-likelihood decoder. Recently, cooperative diversity strategies for two-way wireless relay networks have been proposed using the amplify-and-forward and the decode-and-forward protocols. Although the simultaneous bidirectional decode and-forward transmission has been shown to outperform other decode-and-forward strategies, it has mainly two disadvantages: high relay decoding complexity and the impossibility to use the direct link between the communicating terminals. In this thesis, we propose novel coherent and non-coherent simultaneous bidirectional decode-and-forward distributed space-time coding strategies that provide a higher coding gain and enjoy a substantially lower relay decoding complexity than the state-of-the-art strategies at the same symbol rate. In the proposed strategies, the communicating terminals can benefit from the direct link which is not exploited by other existing simultaneous bidirectional transmission strategies. Various differential distributed space-time coding strategies for two-way relay networks using the amplify-and-forward protocol which do not require channel state information either at the relays or at the terminals have been proposed. The simultaneous two-way differential distributed space-time coding strategy using the amplify-and-forward protocol has been shown to outperform the conventional differential four-phase strategy in the low to medium signal-to-noise ratio region. However, there are mainly three disadvantages associated with it: I) the relay power wasted for transmitting redundant information at either side, ii) the direct link between the communicating terminals can not be used and iii) the considerable bias at high signal-to-noise ratio. In this work, amplify-and-forward differential distributed space-time coding strategies for two-way wireless relay networks are developed, that provide a higher coding gain than the state-of-the art strategies. In the proposed strategies, the relays do not waste power to transmit redundant information at either side and the communicating terminals can fully use the direct link between them. Although differential distributed space-time coding strategies do not require channel state information at the relays, they are associated with a low error performance, a high latency, and decoding complexity. Another strategy used in relay networks relies on coherent processing of the relay signals using distributed beamforming techniques. This strategy enjoys a good error performance and low decoding complexity while offering an optimal decoding delay. However, a common requirement in distributed beamforming is the availability of perfect channel state information at all nodes. To avoid this requirement, we introduce a distributed differential beamforming strategy that combines the differential diversity and the distributed beamforming strategy while retaining the benefits of both approaches. The proposed strategy does not require channel state information at any node and enjoys a good error performance, optimal delay, and low decoding complexity.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Mehrantennensysteme wurden in den vergangenen Jahren intensiv erforscht. Die Verwendung mehrerer Antennen erlaubt es, drahtlose Kommunikationssysteme robuster zu machen, die Übertragungsrate zu erhöhen und Störungen z.B. durch Mehrwegeausbreitung und Interferenzen zu überwinden. Mehrantennensysteme erlauben es, diese Verbesserungen zu erreichen, ohne zusätzliche Frequenzbandbreite oder Übertragungsleistung zu benötigen. Allerdings können Mehrantennensysteme z.B. aus Platz- oder Kostengründen nicht in allen Anwendungen eingesetzt werden. Als Alternative zu Mehrantennensystemen wurden kooperative Systeme vorgeschlagen. Diese erlauben es, ähnliche Gewinne wie Mehrantennensysteme zu erreichen. In dieser Arbeit werden Signalverarbeitungsverfahren für Mehrantennensysteme und kooperative Systeme entwickelt. Ziel dabei ist es, einen möglichst guten Kompromiss zwischen Rechenkomplexität, Bitfehlerrate und Daten übertragungsrate zu erreichen. Wir betrachten zunächst die Raumzeitcodierung für Mehrantennensysteme. Wir entwickeln einen Decoder für quasiorthogonale Codes mit niedriger Rechenkomplexität. Sowohl die kohärente als auch die inkohärente Implementierungen dieses Decoders werden untersucht. Der vorgeschlagene Decoder erreicht in etwa die gleiche Performance wie der optimale Maximum Likelihood Decoder bei einer deutlich geringeren Rechenkomplexität. Verschiedene kooperative Strategien wurden für drahtlose Zwei-Wege Relay-Netze vorgeschlagen basierend auf Amplify-and-Forward und Decode-and-Forward Protokollen. Die gleichzeitige Zwei-Wege Decode-and-Forward Strategie ermöglicht es, höhere Daten übertragungsraten zu erreichen als anderen Decodeand-Forward Strategien. Allerdings erfordert die gleichzeitige Zwei-Wege Decode-and-Forward Strategie eine hohe Rechenkomplexität für die Decodierung und eine direkte Verbindung zwischen den Nutzern wird nicht unterstützt. In dieser Arbeit schlagen wir neue kooperative kohärente und inkohärente gleichzeitige Decode-and-Forward Strategien vor, die einen höheren Codierungsgewinn bieten und eine wesentlich geringere Rechenkomplexität für die Decodierung benötigen als existierende Verfahren. Außerdem ermöglicht es die vorgeschlagene Technik, eine direkte Verbindung zwischen den Teilnehmern zu nutzen. Zusätzlich entwickeln wir ein nichtkohärentes Amplify-and-Forward Codierungsverfahren für Zwei-Wege Relay-Netze. Dieses Verfahren erreicht einen signifikant höheren Kodierungsgewinn als herk¨ommliche Verfahren. Zudem ist es energieeffizienter als existierende Verfahren und es ermöglicht, eine direkte Verbindung zwischen den Teilnehmern zu nutzen. Weiterhin stellen wir ein inkohärentes verteiltes Beamformingverfahren vor. Da die Schätzung des Kanalzustands einen erheblichen Aufwand erfordert und in vielen Anwendungen nicht realisierbar ist, verwenden wir ein differentielles Verfahren, das die Kenntnis des Kanalzustands nicht benötigt. Der vorgeschlagene Beamformer erreicht eine hohe Performance und optimale Latenzzeit bei einer geringen Decodierungskomplexität.

Deutsch
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 22 Mai 2012 10:55
Letzte Änderung: 05 Mär 2013 10:01
PPN:
Referenten: Pesavento, Prof. Dr.- Marius ; Khalaj, Prof. Dr.- Babak
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 12 Mai 2012
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen