TU Darmstadt / ULB / TUbiblio

Polymer-Derived SiOC Nanotubes and Nanorods via a Template Approach

Pashchanka, Mikhail ; Engstler, Jörg ; Schneider, Jörg J. ; Siozios, Vassilios ; Fasel, Claudia ; Hauser, Ralf ; Kinski, Isabel ; Riedel, Ralf ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Flege, Stefan ; Ensinger, Wolfgang (2009)
Polymer-Derived SiOC Nanotubes and Nanorods via a Template Approach.
In: European Journal of Inorganic Chemistry, 2009 (23)
doi: 10.1002/ejic.200801239
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The synthesis of silicon-based ceramic nanowires and nanotubes produced by liquid infiltration of commercially available silicon-based polymers, namely polysilazane (CerasetTM, polyureasilazane), polysilazane VL20 (Kion Coop.) and polycarbosilane (Starfire Systems SP-MatrixTM) in alumina templates with defined pore channels is reported. After polymer infiltration, pyrolysis of the preceramic polymer at 1000–1100 °C in Ar atmosphere followed by dissolution of the alumina templates, ceramic nanowires and nanotubes were obtained. In the case of the polymeric ceramic precursor polysilazane, nanorods were formed only if an oligomeric fraction was distilled off from the polymer precursor prior to infiltration of the template. In contrast, the formation of nanotubes was found after infiltration of the untreated (crude) preceramic polymer. Despite the fact that the preceramic polymers contain silicon, carbon and nitrogen and no oxygen as constituting elements, the final ceramic nanostructures obtained were analysed consistantly by various techniques to contain oxygen and only limited amounts of carbon and nitrogen after pyrolysis consistent with a composition as silicon oxycarbide (SiOC). This behaviour strongly indicates that the porous alumina template may significantly influence the pyrolysis process of the precursors thus affecting the chemical composition of the final ceramic products. It is a central result of our study that the alumina templates are not inert under the reaction conditions employed instead acting as a reaction partner at the high temperatures employed during pyrolysis. Taking this into account, reaction of otherwise inert amorphous alumina with inorganic polymers at elevated temperatures could lead to a directed synthesis of new ceramic compositions.

Typ des Eintrags: Artikel
Erschienen: 2009
Autor(en): Pashchanka, Mikhail ; Engstler, Jörg ; Schneider, Jörg J. ; Siozios, Vassilios ; Fasel, Claudia ; Hauser, Ralf ; Kinski, Isabel ; Riedel, Ralf ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Flege, Stefan ; Ensinger, Wolfgang
Art des Eintrags: Bibliographie
Titel: Polymer-Derived SiOC Nanotubes and Nanorods via a Template Approach
Sprache: Englisch
Publikationsjahr: August 2009
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: European Journal of Inorganic Chemistry
Jahrgang/Volume einer Zeitschrift: 2009
(Heft-)Nummer: 23
DOI: 10.1002/ejic.200801239
URL / URN: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002...
Kurzbeschreibung (Abstract):

The synthesis of silicon-based ceramic nanowires and nanotubes produced by liquid infiltration of commercially available silicon-based polymers, namely polysilazane (CerasetTM, polyureasilazane), polysilazane VL20 (Kion Coop.) and polycarbosilane (Starfire Systems SP-MatrixTM) in alumina templates with defined pore channels is reported. After polymer infiltration, pyrolysis of the preceramic polymer at 1000–1100 °C in Ar atmosphere followed by dissolution of the alumina templates, ceramic nanowires and nanotubes were obtained. In the case of the polymeric ceramic precursor polysilazane, nanorods were formed only if an oligomeric fraction was distilled off from the polymer precursor prior to infiltration of the template. In contrast, the formation of nanotubes was found after infiltration of the untreated (crude) preceramic polymer. Despite the fact that the preceramic polymers contain silicon, carbon and nitrogen and no oxygen as constituting elements, the final ceramic nanostructures obtained were analysed consistantly by various techniques to contain oxygen and only limited amounts of carbon and nitrogen after pyrolysis consistent with a composition as silicon oxycarbide (SiOC). This behaviour strongly indicates that the porous alumina template may significantly influence the pyrolysis process of the precursors thus affecting the chemical composition of the final ceramic products. It is a central result of our study that the alumina templates are not inert under the reaction conditions employed instead acting as a reaction partner at the high temperatures employed during pyrolysis. Taking this into account, reaction of otherwise inert amorphous alumina with inorganic polymers at elevated temperatures could lead to a directed synthesis of new ceramic compositions.

Freie Schlagworte: Porous alumina, Silicon, Carbides, Ceramics, Nanorods, Nanotubes, Nanowires, Template synthesis
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
Hinterlegungsdatum: 12 Apr 2012 11:35
Letzte Änderung: 16 Aug 2021 12:16
PPN:
Sponsoren: Funded by Deutsche Forschungsgemeinschaft (DFG). Grant Numbers: SCHN 375 15-1, Ri 375 26-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen