TU Darmstadt / ULB / TUbiblio

Polymer-Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part II: Stability Toward Decomposition and Microstructure Evolution at T≫1000°C

Ionescu, Emanuel ; Papendorf, Benjamin ; Kleebe, Hans-Joachim ; Riedel, Ralf (2010)
Polymer-Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part II: Stability Toward Decomposition and Microstructure Evolution at T≫1000°C.
In: Journal of the American Ceramic Society, 93 (6)
doi: 10.1111/j.1551-2916.2009.03527.x
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

This study presents first investigations on the high-temperature stability and microstructure evolution of SiOC/HfO2 ceramic nanocomposites. Polymer-derived SiOC/HfO2 ceramic nanocomposites have been prepared via chemical modification of a commercially available polysilsesquioxane by hafnium tetra (n-butoxide). The modified polysilsesquioxane-based materials were cross-linked and subsequently pyrolyzed at 1100°C in argon atmosphere to obtain SiOC/HfO2 ceramic nanocomposites. Annealing experiments at temperatures between 1300° and 1600°C were performed and the annealed materials were investigated with respect to chemical composition and microstructure. The ceramic nanocomposites presented here were found to exhibit a remarkably improved thermal stability up to 1600°C in comparison with hafnia-free silicon oxycarbide. Chemical analysis, X-ray diffraction, FTIR, and Raman spectroscopy as well as electron microscopy (SEM, TEM) studies revealed that the excellent thermal stability of the SiOC/HfO2 nanocomposites is a consequence of the in situ formation of hafnon (HfSiO4), which represents a concurrent reaction to the carbothermal decomposition of the SiOC matrix. Thus, by the annealing of SiOC/HfO2 materials at 1600°C, novel HfSiO4/SiC/C ceramic nanocomposites can be generated. The results presented emphasize the potential of these materials for application at high temperatures.

Typ des Eintrags: Artikel
Erschienen: 2010
Autor(en): Ionescu, Emanuel ; Papendorf, Benjamin ; Kleebe, Hans-Joachim ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Polymer-Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part II: Stability Toward Decomposition and Microstructure Evolution at T≫1000°C
Sprache: Englisch
Publikationsjahr: Juni 2010
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 93
(Heft-)Nummer: 6
DOI: 10.1111/j.1551-2916.2009.03527.x
Kurzbeschreibung (Abstract):

This study presents first investigations on the high-temperature stability and microstructure evolution of SiOC/HfO2 ceramic nanocomposites. Polymer-derived SiOC/HfO2 ceramic nanocomposites have been prepared via chemical modification of a commercially available polysilsesquioxane by hafnium tetra (n-butoxide). The modified polysilsesquioxane-based materials were cross-linked and subsequently pyrolyzed at 1100°C in argon atmosphere to obtain SiOC/HfO2 ceramic nanocomposites. Annealing experiments at temperatures between 1300° and 1600°C were performed and the annealed materials were investigated with respect to chemical composition and microstructure. The ceramic nanocomposites presented here were found to exhibit a remarkably improved thermal stability up to 1600°C in comparison with hafnia-free silicon oxycarbide. Chemical analysis, X-ray diffraction, FTIR, and Raman spectroscopy as well as electron microscopy (SEM, TEM) studies revealed that the excellent thermal stability of the SiOC/HfO2 nanocomposites is a consequence of the in situ formation of hafnon (HfSiO4), which represents a concurrent reaction to the carbothermal decomposition of the SiOC matrix. Thus, by the annealing of SiOC/HfO2 materials at 1600°C, novel HfSiO4/SiC/C ceramic nanocomposites can be generated. The results presented emphasize the potential of these materials for application at high temperatures.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 11 Apr 2012 11:23
Letzte Änderung: 13 Aug 2021 11:13
PPN:
Sponsoren: Financial support by Fonds der Chemischen Industrie.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen