TU Darmstadt / ULB / TUbiblio

Caloric Effects in Ferroic Materials: New Concepts for Cooling

Fähler, Sebastian ; Rößler, Ulrich K. ; Kastner, Oliver ; Eckert, Jürgen ; Eggeler, Gunther ; Emmerich, Heike ; Entel, Peter ; Müller, Stefan ; Quandt, Eckhard ; Albe, Karsten (2012)
Caloric Effects in Ferroic Materials: New Concepts for Cooling.
In: Advanced Engineering Materials, 14 (1-2)
doi: 10.1002/adem.201100178
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Refrigeration is one of the main sinks of the German and European electricity consumption and accordingly contributes to worldwide CO2 emissions. High reduction potentials are envisaged if caloric effects in solid materials are used. The recent discovery of giant entropy changes associated with ferroelastic phase transformations promises higher efficiency. Ferroic transitions enhance the entropy change of magneto-, elasto-, baro-, and electro-caloric effects. Furthermore, because the refrigerant is in a solid state, this technology completely eliminates the need for halofluorocarbon refrigerants having a high global-warming potential. The smaller footprint for operation and the scalable mechanism open up further applications such as cooling of microsystems. While the principal feasibility of magnetocaloric refrigeration is already evident, it requires large magnetic fields (>2 T) which hampers wide industrial and commercial application. It is expected that this obstacle can be overcome by materials with lower hysteresis and by using stress- or electric fields. In order to accelerate research on ferroic cooling, the Deutsche Forschungsgemeinschaft (DFG) decided to establish the priority program SPP 1599 in April 2011. In this article we will address the major challenges for introducing ferroic materials in practical cooling applications: energy efficiency, effect size, and fatigue behavior. Solid state cooling in this sense can be based on the following “ferroic-caloric” classes of materials: ferroelastic shape memory alloys, ferromagnetic shape memory alloys, and ferroelectric materials and their possible combinations in materials with “multicaloric” effects. The open questions require the interdisciplinary collaboration of material scientists, engineers, physicists, and mathematicians.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Fähler, Sebastian ; Rößler, Ulrich K. ; Kastner, Oliver ; Eckert, Jürgen ; Eggeler, Gunther ; Emmerich, Heike ; Entel, Peter ; Müller, Stefan ; Quandt, Eckhard ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Caloric Effects in Ferroic Materials: New Concepts for Cooling
Sprache: Englisch
Publikationsjahr: Februar 2012
Verlag: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 1-2
DOI: 10.1002/adem.201100178
Zugehörige Links:
Kurzbeschreibung (Abstract):

Refrigeration is one of the main sinks of the German and European electricity consumption and accordingly contributes to worldwide CO2 emissions. High reduction potentials are envisaged if caloric effects in solid materials are used. The recent discovery of giant entropy changes associated with ferroelastic phase transformations promises higher efficiency. Ferroic transitions enhance the entropy change of magneto-, elasto-, baro-, and electro-caloric effects. Furthermore, because the refrigerant is in a solid state, this technology completely eliminates the need for halofluorocarbon refrigerants having a high global-warming potential. The smaller footprint for operation and the scalable mechanism open up further applications such as cooling of microsystems. While the principal feasibility of magnetocaloric refrigeration is already evident, it requires large magnetic fields (>2 T) which hampers wide industrial and commercial application. It is expected that this obstacle can be overcome by materials with lower hysteresis and by using stress- or electric fields. In order to accelerate research on ferroic cooling, the Deutsche Forschungsgemeinschaft (DFG) decided to establish the priority program SPP 1599 in April 2011. In this article we will address the major challenges for introducing ferroic materials in practical cooling applications: energy efficiency, effect size, and fatigue behavior. Solid state cooling in this sense can be based on the following “ferroic-caloric” classes of materials: ferroelastic shape memory alloys, ferromagnetic shape memory alloys, and ferroelectric materials and their possible combinations in materials with “multicaloric” effects. The open questions require the interdisciplinary collaboration of material scientists, engineers, physicists, and mathematicians.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 21 Mär 2012 09:41
Letzte Änderung: 05 Mär 2013 09:59
PPN:
Zugehörige Links:
Sponsoren: Authors contributed to establish the DFG Priority Program SPP 1599.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen