Grebenev, V. N. ; Oberlack, Martin (2012)
A geometry of the correlation space and a nonlocal degenerate parabolic equation from isotropic turbulence.
In: Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 92 (3)
doi: 10.1002/zamm.201100021
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Considering the metric tensor ds^2(t), associated with the two-point velocity correlation tensor field (parametrized by the time variable t) in the space k^3of correlation vectors, at the first part of the paper we construct the Lagrangian system (M^t,ds^2(t)) in the extended space k^3 × R+ for homogeneous isotropic turbulence. This allows to introduce into the consideration common concept and technics of Lagrangian mechanics for the application in turbulence. Dynamics in time of (M^t,ds^2(t)) (a singled out fluid volume equipped with a family of pseudo-Riemannian metrics) is described in the frame of the geometry generated by the 1-parameter family of metrics ds^2(t) whose components are the correlation functions that evolve according to the von Kármán-Howarth equation. This is the first step one needs to get in a future analysis the physical realization of the evolution of this volume. It means that we have to construct isometric embedding of the manifold Mt equipped with metric ds^2(t) into R^3 with the Euclidean metric. In order to specify the correlation functions, at the second part of this paper we study in details an initial-boundary value problem to the closure model [19,26] for the von Kármán-Howarth equation in the case of large Reynolds numbers limit.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2012 |
Autor(en): | Grebenev, V. N. ; Oberlack, Martin |
Art des Eintrags: | Bibliographie |
Titel: | A geometry of the correlation space and a nonlocal degenerate parabolic equation from isotropic turbulence |
Sprache: | Englisch |
Publikationsjahr: | März 2012 |
Verlag: | WILEY-VCH Verlag |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) |
Jahrgang/Volume einer Zeitschrift: | 92 |
(Heft-)Nummer: | 3 |
DOI: | 10.1002/zamm.201100021 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Considering the metric tensor ds^2(t), associated with the two-point velocity correlation tensor field (parametrized by the time variable t) in the space k^3of correlation vectors, at the first part of the paper we construct the Lagrangian system (M^t,ds^2(t)) in the extended space k^3 × R+ for homogeneous isotropic turbulence. This allows to introduce into the consideration common concept and technics of Lagrangian mechanics for the application in turbulence. Dynamics in time of (M^t,ds^2(t)) (a singled out fluid volume equipped with a family of pseudo-Riemannian metrics) is described in the frame of the geometry generated by the 1-parameter family of metrics ds^2(t) whose components are the correlation functions that evolve according to the von Kármán-Howarth equation. This is the first step one needs to get in a future analysis the physical realization of the evolution of this volume. It means that we have to construct isometric embedding of the manifold Mt equipped with metric ds^2(t) into R^3 with the Euclidean metric. In order to specify the correlation functions, at the second part of this paper we study in details an initial-boundary value problem to the closure model [19,26] for the von Kármán-Howarth equation in the case of large Reynolds numbers limit. |
Freie Schlagworte: | Two-point correlation tensor; Lagrangian; von Kármán-Howarth equation; initial-boundary value problem; solvability; asymptotic behavior |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) Exzellenzinitiative Exzellenzinitiative > Exzellenzcluster Zentrale Einrichtungen Exzellenzinitiative > Exzellenzcluster > Center of Smart Interfaces (CSI) |
Hinterlegungsdatum: | 06 Mär 2012 09:50 |
Letzte Änderung: | 15 Feb 2019 14:17 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |