TU Darmstadt / ULB / TUbiblio

Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide

Agoston, Peter ; Erhart, Paul ; Klein, Andreas ; Albe, Karsten :
Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide.
[Online-Edition: http://iopscience.iop.org/0953-8984/21/45/455801/]
In: Journal of Physics: Condensed Matter, 21 (45) pp. 455801-1. ISSN 0953-8984
[Artikel], (2009)
Note:

SFB 595 Cooperation C2, D3

Offizielle URL: http://iopscience.iop.org/0953-8984/21/45/455801/

Kurzbeschreibung (Abstract)

Intrinsic point defects in indium oxide, including vacancies, interstitials as well as antisites, are studied by means of first-principles calculations within density functional theory using the generalized gradient approximation together with on-site corrections. Finite-size effects are corrected by an extrapolation procedure in order to obtain defect formation energies at infinite dilution. The results show that all intrinsic donor defects have shallow states and are capable of producing free electrons in the conduction band. This applies in particular to the oxygen vacancy. Since it has also a low formation energy, we find that the oxygen vacancy should be the major donor in this material explaining the n-type conductivity as well as the non-stoichiometry of indium oxide. In addition, we show that there are a wealth of oxygen dumbbell-like defects which are thermodynamically relevant under oxidizing conditions. Finally, we discuss defect induced changes of the electronic structure.

Typ des Eintrags: Artikel
Erschienen: 2009
Autor(en): Agoston, Peter ; Erhart, Paul ; Klein, Andreas ; Albe, Karsten
Titel: Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide
Sprache: Englisch
Kurzbeschreibung (Abstract):

Intrinsic point defects in indium oxide, including vacancies, interstitials as well as antisites, are studied by means of first-principles calculations within density functional theory using the generalized gradient approximation together with on-site corrections. Finite-size effects are corrected by an extrapolation procedure in order to obtain defect formation energies at infinite dilution. The results show that all intrinsic donor defects have shallow states and are capable of producing free electrons in the conduction band. This applies in particular to the oxygen vacancy. Since it has also a low formation energy, we find that the oxygen vacancy should be the major donor in this material explaining the n-type conductivity as well as the non-stoichiometry of indium oxide. In addition, we show that there are a wealth of oxygen dumbbell-like defects which are thermodynamically relevant under oxidizing conditions. Finally, we discuss defect induced changes of the electronic structure.

Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Condensed Matter
Band: 21
(Heft-)Nummer: 45
Fachbereich(e)/-gebiet(e): Fachbereich Material- und Geowissenschaften > Materialwissenschaften > Materialmodellierung
Fachbereich Material- und Geowissenschaften > Materialwissenschaften > Oberflächenforschung / Surface Science
Zentrale Einrichtungen
Zentrale Einrichtungen > Sonderforschungsbereich 595
Zentrale Einrichtungen > Sonderforschungsbereich 595 > C - Modellierung
Zentrale Einrichtungen > Sonderforschungsbereich 595 > C - Modellierung > C2
Zentrale Einrichtungen > Sonderforschungsbereich 595 > D - Bauteileigenschaften
Zentrale Einrichtungen > Sonderforschungsbereich 595 > D - Bauteileigenschaften > D3
Fachbereich Material- und Geowissenschaften > Materialwissenschaften
Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 02 Mär 2012 13:00
Offizielle URL: http://iopscience.iop.org/0953-8984/21/45/455801/
Zusätzliche Informationen:

SFB 595 Cooperation C2, D3

ID-Nummer: 10.1088/0953-8984/21/45/455801
Sponsoren: We acknowledge the financial support through the Sonderforschungsbereich 595 ‘Fatigue of functional materials’ of the Deutsche Forschungsgemeinschaft., Moreover, this work was made possible by grants for computing time on HHLR supercomputers at HRZ (TU-Darmstadt) and JSC at FZ-Jülich.
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen