TU Darmstadt / ULB / TUbiblio

Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide

Agoston, Peter ; Erhart, Paul ; Klein, Andreas ; Albe, Karsten (2009)
Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide.
In: Journal of Physics: Condensed Matter, 21 (45)
doi: 10.1088/0953-8984/21/45/455801
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Intrinsic point defects in indium oxide, including vacancies, interstitials as well as antisites, are studied by means of first-principles calculations within density functional theory using the generalized gradient approximation together with on-site corrections. Finite-size effects are corrected by an extrapolation procedure in order to obtain defect formation energies at infinite dilution. The results show that all intrinsic donor defects have shallow states and are capable of producing free electrons in the conduction band. This applies in particular to the oxygen vacancy. Since it has also a low formation energy, we find that the oxygen vacancy should be the major donor in this material explaining the n-type conductivity as well as the non-stoichiometry of indium oxide. In addition, we show that there are a wealth of oxygen dumbbell-like defects which are thermodynamically relevant under oxidizing conditions. Finally, we discuss defect induced changes of the electronic structure.

Typ des Eintrags: Artikel
Erschienen: 2009
Autor(en): Agoston, Peter ; Erhart, Paul ; Klein, Andreas ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide
Sprache: Englisch
Publikationsjahr: 23 Oktober 2009
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Condensed Matter
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 45
DOI: 10.1088/0953-8984/21/45/455801
Kurzbeschreibung (Abstract):

Intrinsic point defects in indium oxide, including vacancies, interstitials as well as antisites, are studied by means of first-principles calculations within density functional theory using the generalized gradient approximation together with on-site corrections. Finite-size effects are corrected by an extrapolation procedure in order to obtain defect formation energies at infinite dilution. The results show that all intrinsic donor defects have shallow states and are capable of producing free electrons in the conduction band. This applies in particular to the oxygen vacancy. Since it has also a low formation energy, we find that the oxygen vacancy should be the major donor in this material explaining the n-type conductivity as well as the non-stoichiometry of indium oxide. In addition, we show that there are a wealth of oxygen dumbbell-like defects which are thermodynamically relevant under oxidizing conditions. Finally, we discuss defect induced changes of the electronic structure.

Zusätzliche Informationen:

SFB 595 Cooperation C2, D3

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung > Teilprojekt C2: Atomistische Computersimulationen von Defekten und deren Bewegung in Metalloxiden
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > D - Bauteileigenschaften > Teilprojekt D3: Funktion und Ermüdung oxidischer Elektroden in organischen Leuchtdioden
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 02 Mär 2012 13:00
Letzte Änderung: 25 Mär 2015 21:44
PPN:
Sponsoren: We acknowledge the financial support through the Sonderforschungsbereich 595 ‘Fatigue of functional materials’ of the Deutsche Forschungsgemeinschaft., Moreover, this work was made possible by grants for computing time on HHLR supercomputers at HRZ (TU-Darmstadt) and JSC at FZ-Jülich.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen