Albe, K. ; Nordlund, K. ; Averback, R. S. (2002)
Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon.
In: Phys. Rev. B, 65 (19)
doi: 10.1103/PhysRevB.65.195124
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We propose an analytical interatomic potential for modeling platinum, carbon, and the platinum-carbon interaction using a single functional form. The ansatz chosen for this potential makes use of the fact that chemical bonding in both covalent systems and d-transition metals can be described in terms of the Pauling bond order. By adopting Brenner's original bond-order potential for carbon {\}Phys. Rev. B 42, 9458 (1990) we devise an analytical expression that has an equivalent form for describing the C-C/Pt-Pt/Pt-C interactions. It resembles, in the case of the pure metal interaction, an embedded-atom scheme, but includes angularity. The potential consequently provides an excellent description of the properties of Pt including the elastic anisotropy ratio. The parameters for both the Pt-Pt interaction and the Pt-C interaction are systematically adjusted using a combination of experimental and theoretical data, the latter being generated by total-energy calculations based on density-functional theory. This approach offers good chemical accuracy in describing all types of interactions, and has a wide applicability for modeling metal-semiconductor systems.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2002 |
Autor(en): | Albe, K. ; Nordlund, K. ; Averback, R. S. |
Art des Eintrags: | Bibliographie |
Titel: | Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon |
Sprache: | Englisch |
Publikationsjahr: | 13 Mai 2002 |
Verlag: | American Physical Society |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Phys. Rev. B |
Jahrgang/Volume einer Zeitschrift: | 65 |
(Heft-)Nummer: | 19 |
DOI: | 10.1103/PhysRevB.65.195124 |
URL / URN: | http://prb.aps.org/abstract/PRB/v65/i19/e195124 |
Kurzbeschreibung (Abstract): | We propose an analytical interatomic potential for modeling platinum, carbon, and the platinum-carbon interaction using a single functional form. The ansatz chosen for this potential makes use of the fact that chemical bonding in both covalent systems and d-transition metals can be described in terms of the Pauling bond order. By adopting Brenner's original bond-order potential for carbon {\}Phys. Rev. B 42, 9458 (1990) we devise an analytical expression that has an equivalent form for describing the C-C/Pt-Pt/Pt-C interactions. It resembles, in the case of the pure metal interaction, an embedded-atom scheme, but includes angularity. The potential consequently provides an excellent description of the properties of Pt including the elastic anisotropy ratio. The parameters for both the Pt-Pt interaction and the Pt-C interaction are systematically adjusted using a combination of experimental and theoretical data, the latter being generated by total-energy calculations based on density-functional theory. This approach offers good chemical accuracy in describing all types of interactions, and has a wide applicability for modeling metal-semiconductor systems. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften |
Hinterlegungsdatum: | 02 Mär 2012 12:43 |
Letzte Änderung: | 28 Apr 2016 09:47 |
PPN: | |
Sponsoren: | This work was supported by the U.S. Department of Energy through the University of California under Subcontract No. B341494 and by the U.S. Department of Energy, Basic Energy Sciences, under Grant No. DEFG02-96ER45439., Grants of computing time from National Computational Science Alliance at UIUC and the National Energy Research Supercomputer Center are gratefully acknowledged. |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |