TU Darmstadt / ULB / TUbiblio

Nanocluster rotation on {P}t surfaces: twist boundaries

Ashkenazy, Y. ; Averback, R. S. ; Albe, K. (2001)
Nanocluster rotation on {P}t surfaces: twist boundaries.
In: Phys. Rev. B, 64 (20)
doi: 10.1103/PhysRevB.64.205409
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Nanoscale Pt particles situated on a Pt surface are studied by molecular dynamics simulations. It is shown that for the simple case of symmetrical twist boundaries with low index planes, the structure and dynamics of the system are sensitive to finite size effects. Namely, below a specific nanoparticle size the particles will align themselves with the substrate, while for larger particles a stable array of grain boundary dislocations is created. It is shown that nanoparticle rotation is a direct result of athermal slip of the grain boundary dislocations that are created at the particle-substrate interface. The size effects are unique to nano-sized particles and thus have not yet been observed in past experiments. The simulations also show that the energy and structure of the boundaries are also affected by the system size.

Typ des Eintrags: Artikel
Erschienen: 2001
Autor(en): Ashkenazy, Y. ; Averback, R. S. ; Albe, K.
Art des Eintrags: Bibliographie
Titel: Nanocluster rotation on {P}t surfaces: twist boundaries
Sprache: Englisch
Publikationsjahr: 31 Oktober 2001
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Phys. Rev. B
Jahrgang/Volume einer Zeitschrift: 64
(Heft-)Nummer: 20
DOI: 10.1103/PhysRevB.64.205409
URL / URN: http://prb.aps.org/abstract/PRB/v64/i20/e205409
Kurzbeschreibung (Abstract):

Nanoscale Pt particles situated on a Pt surface are studied by molecular dynamics simulations. It is shown that for the simple case of symmetrical twist boundaries with low index planes, the structure and dynamics of the system are sensitive to finite size effects. Namely, below a specific nanoparticle size the particles will align themselves with the substrate, while for larger particles a stable array of grain boundary dislocations is created. It is shown that nanoparticle rotation is a direct result of athermal slip of the grain boundary dislocations that are created at the particle-substrate interface. The size effects are unique to nano-sized particles and thus have not yet been observed in past experiments. The simulations also show that the energy and structure of the boundaries are also affected by the system size.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 28 Feb 2012 15:19
Letzte Änderung: 06 Jul 2018 10:51
PPN:
Sponsoren: Support for this work from the U.S. Department of Energy through the University of California under subcontract B341494 and the U.S. Department of Energy–Basic Energy Science under Grant No. DEFG02-96-ER45439, and grants of computer time from National Computational Science Alliance at UIUC and the National Energy Research Supercomputer Center are gratefully acknowledged.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen