TU Darmstadt / ULB / TUbiblio

Thermal annealing of shear bands in deformed metallic glasses: Recovery mechanisms in Cu64/Zr36/studied by molecular dynamics simulations

Ritter, Yvonne ; Albe, Karsten (2011)
Thermal annealing of shear bands in deformed metallic glasses: Recovery mechanisms in Cu64/Zr36/studied by molecular dynamics simulations.
In: Acta Materialia, 59 (18)
doi: 10.1016/j.actamat.2011.07.063
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Molecular dynamics simulations on the recovery of shear bands in deformed binary Cu64Zr36 glasses are presented. While the shear band (SB) formation induced by plastic deformation leads to an increase in excess volume, the material surrounding the SB experiences a compressive strain due to the dilatation of the SB. This is accompanied by changes in topological and chemical short-range order within the shear band. Isothermal annealing of the sample leads to redistribution and annihilation of excess volume, which is coupled to the recovery of local order and depends on the temperature. At lower temperatures (500 K) diffusion by a chain-like process is the dominating mechanism of structural recovery, similar to processes occurring in supercooled liquids. At higher temperatures (800 K) individual atomic displacements also start to contribute to the recovery process. At temperatures close to the glass transition, the recovery occurs on timescales of about 20 ns. If the annealing temperature is higher than Tg, thermal activation is sufficient to rejuvenate the glass structure.

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Ritter, Yvonne ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Thermal annealing of shear bands in deformed metallic glasses: Recovery mechanisms in Cu64/Zr36/studied by molecular dynamics simulations
Sprache: Englisch
Publikationsjahr: Oktober 2011
Verlag: Elsevier Science Publishing Company
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 59
(Heft-)Nummer: 18
DOI: 10.1016/j.actamat.2011.07.063
URL / URN: http://www.sciencedirect.com/science/article/pii/S1359645411...
Kurzbeschreibung (Abstract):

Molecular dynamics simulations on the recovery of shear bands in deformed binary Cu64Zr36 glasses are presented. While the shear band (SB) formation induced by plastic deformation leads to an increase in excess volume, the material surrounding the SB experiences a compressive strain due to the dilatation of the SB. This is accompanied by changes in topological and chemical short-range order within the shear band. Isothermal annealing of the sample leads to redistribution and annihilation of excess volume, which is coupled to the recovery of local order and depends on the temperature. At lower temperatures (500 K) diffusion by a chain-like process is the dominating mechanism of structural recovery, similar to processes occurring in supercooled liquids. At higher temperatures (800 K) individual atomic displacements also start to contribute to the recovery process. At temperatures close to the glass transition, the recovery occurs on timescales of about 20 ns. If the annealing temperature is higher than Tg, thermal activation is sufficient to rejuvenate the glass structure.

Freie Schlagworte: Metallic glasses, Shear bands, Recovery, Annealing, Molecular dynamics
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 22 Feb 2012 16:26
Letzte Änderung: 05 Mär 2013 09:58
PPN:
Sponsoren: The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through Project Grant No. Al-578/13-1., A DAAD-PPP travel grant is also acknowledged. Computing time was made available by HHLR Frankfurt and Darmstadt, as well as by CSC Julich.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen