TU Darmstadt / ULB / TUbiblio

Chemical order and local structure of the lead-free relaxor ferroelectric (Na1/2Bi1/2)TiO3

Gröting, Melanie ; Hayn, Silke ; Albe, Karsten (2011)
Chemical order and local structure of the lead-free relaxor ferroelectric (Na1/2Bi1/2)TiO3.
In: Journal of Solid State Chemistry, 184 (8)
doi: 10.1016/j.jssc.2011.05.044
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The A-site mixed perovskite sodium bismuth titanate (Na1/2Bi1/2)TiO3 (NBT) is investigated by means of first-principles calculations based on density functional theory. By studying different geometries with varying occupations of the A-site, the influence of chemical order on the thermodynamic stability and local structure is explored. We find that the hybridization of Bi 6sp with O 2p-states leads to stereochemically active Bi3+ lone pairs and increases the stability of structures with high Bi concentrations in {001}-planes. This goes along with displacive disorder on the oxygen sublattice, which up to now has been neglected in experimental studies. The calculated ordering energies are, however, small as compared to the thermal energy and therefore only short-range chemical order can be expected in experiments. Thus, it is conceivable that chemically ordered local areas can act as nucleation sites for polar nano-regions, which would explain the experimentally observed relaxor behavior of NBT.

Typ des Eintrags: Artikel
Erschienen: 2011
Autor(en): Gröting, Melanie ; Hayn, Silke ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Chemical order and local structure of the lead-free relaxor ferroelectric (Na1/2Bi1/2)TiO3
Sprache: Englisch
Publikationsjahr: August 2011
Verlag: Elsevier Science Publishing Company
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Solid State Chemistry
Jahrgang/Volume einer Zeitschrift: 184
(Heft-)Nummer: 8
DOI: 10.1016/j.jssc.2011.05.044
URL / URN: http://www.sciencedirect.com/science/article/pii/S0022459611...
Kurzbeschreibung (Abstract):

The A-site mixed perovskite sodium bismuth titanate (Na1/2Bi1/2)TiO3 (NBT) is investigated by means of first-principles calculations based on density functional theory. By studying different geometries with varying occupations of the A-site, the influence of chemical order on the thermodynamic stability and local structure is explored. We find that the hybridization of Bi 6sp with O 2p-states leads to stereochemically active Bi3+ lone pairs and increases the stability of structures with high Bi concentrations in {001}-planes. This goes along with displacive disorder on the oxygen sublattice, which up to now has been neglected in experimental studies. The calculated ordering energies are, however, small as compared to the thermal energy and therefore only short-range chemical order can be expected in experiments. Thus, it is conceivable that chemically ordered local areas can act as nucleation sites for polar nano-regions, which would explain the experimentally observed relaxor behavior of NBT.

Freie Schlagworte: Perovskite, Relaxor, NBT, Chemical order, Local structure
Zusätzliche Informationen:

SFB 595 C1

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung > Teilprojekt C1: Quantenmechanische Computersimulationen zur Elektronen- und Defektstruktur oxidischer Materialien
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > C - Modellierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 22 Feb 2012 16:26
Letzte Änderung: 05 Mär 2013 09:58
PPN:
Sponsoren: This work has been financially supported by the LOEWE-Center “Adaptronics—Research, Innovation, Application” and by the DFG Center of Excellence 595 “Electrical Fatigue in Functional Materials”., Moreover, this work was made possible by grants for computing time on supercomputers at HRZ Darmstadt.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen