TU Darmstadt / ULB / TUbiblio

Precise placement of multiple electrodes into functionally predefined cortical locations.

Niessing, Michael ; Schmidt, Kerstin ; Singer, Wolf ; Galuske, Ralf A. W. (2003)
Precise placement of multiple electrodes into functionally predefined cortical locations.
In: Journal of neuroscience methods, 126 (2)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Current research on topics such as effective connectivity, neuronal coding strategy or signal propagation in the central nervous system requires simultaneous recordings from multiple sites within functionally grouped but topologically distributed neuronal clusters. We have addressed this issue by characterization of the cortical functional architecture using optical imaging of intrinsic signals (OI) and subsequent placement of multiple, individually adjustable electrodes into pre-selected domains. In order to achieve maximum precision and flexibility for the positioning of electrodes, a plastic cylinder containing channels of an extremely high aspect ratio (density >20 channels/mm(2)) was fixed above the cortex and individual channel positions were superimposed onto the functional maps of orientation columns obtained previously with OI. Subsequently, channels corresponding to the desired locations in the functional map were used as guide tubes for electrode insertion. The spatial precision of this approach was in the range of 100 microm and experiments in cat primary visual cortex revealed a close correlation between the desired and the actually recorded orientation preferences of the targeted columns. The method is applicable to all cortical areas in which OI is feasible and offers a high degree of flexibility with respect to the number and geometry of applicable probes. It is, thus, an excellent tool for studying distributed codes and interactions between multiple predefined recording sites.

Typ des Eintrags: Artikel
Erschienen: 2003
Autor(en): Niessing, Michael ; Schmidt, Kerstin ; Singer, Wolf ; Galuske, Ralf A. W.
Art des Eintrags: Bibliographie
Titel: Precise placement of multiple electrodes into functionally predefined cortical locations.
Sprache: Englisch
Publikationsjahr: 2003
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of neuroscience methods
Jahrgang/Volume einer Zeitschrift: 126
(Heft-)Nummer: 2
Kurzbeschreibung (Abstract):

Current research on topics such as effective connectivity, neuronal coding strategy or signal propagation in the central nervous system requires simultaneous recordings from multiple sites within functionally grouped but topologically distributed neuronal clusters. We have addressed this issue by characterization of the cortical functional architecture using optical imaging of intrinsic signals (OI) and subsequent placement of multiple, individually adjustable electrodes into pre-selected domains. In order to achieve maximum precision and flexibility for the positioning of electrodes, a plastic cylinder containing channels of an extremely high aspect ratio (density >20 channels/mm(2)) was fixed above the cortex and individual channel positions were superimposed onto the functional maps of orientation columns obtained previously with OI. Subsequently, channels corresponding to the desired locations in the functional map were used as guide tubes for electrode insertion. The spatial precision of this approach was in the range of 100 microm and experiments in cat primary visual cortex revealed a close correlation between the desired and the actually recorded orientation preferences of the targeted columns. The method is applicable to all cortical areas in which OI is feasible and offers a high degree of flexibility with respect to the number and geometry of applicable probes. It is, thus, an excellent tool for studying distributed codes and interactions between multiple predefined recording sites.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Systemische Neurophysiologie
?? fb10_zoologie ??
10 Fachbereich Biologie
Hinterlegungsdatum: 21 Feb 2012 13:26
Letzte Änderung: 05 Mär 2013 09:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen