TU Darmstadt / ULB / TUbiblio

Characterizing Sleeping Trends from Postures

Borazio, Marko ; Blanke, Ulf ; Laerhoven, Kristof Van (2010)
Characterizing Sleeping Trends from Postures.
Proceedings of the 14th IEEE International Symposium on Wearable Computers (ISWC 2010). Shanghai, China (07.11.2010-11.11.2010)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We present an approach to model sleeping trends, using a light-weight setup to be deployed over longer time-spans and with a minimum of maintenance by the user. Instead of characterizing sleep with traditional signals such as EEG and EMG, we propose to use sensor data that is a lot weaker, but also less invasive and that can be deployed unobtrusively for longer periods. By recording wrist-worn accelerometer data during a 4-week-long study, we explore in this poster how sleeping trends can be characterized over long periods of time by using sleeping postures only.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2010
Autor(en): Borazio, Marko ; Blanke, Ulf ; Laerhoven, Kristof Van
Art des Eintrags: Bibliographie
Titel: Characterizing Sleeping Trends from Postures
Sprache: Englisch
Publikationsjahr: 2010
Ort: Seoul, South Korea
Verlag: IEEE Press
Veranstaltungstitel: Proceedings of the 14th IEEE International Symposium on Wearable Computers (ISWC 2010)
Veranstaltungsort: Shanghai, China
Veranstaltungsdatum: 07.11.2010-11.11.2010
Kurzbeschreibung (Abstract):

We present an approach to model sleeping trends, using a light-weight setup to be deployed over longer time-spans and with a minimum of maintenance by the user. Instead of characterizing sleep with traditional signals such as EEG and EMG, we propose to use sensor data that is a lot weaker, but also less invasive and that can be deployed unobtrusively for longer periods. By recording wrist-worn accelerometer data during a 4-week-long study, we explore in this poster how sleeping trends can be characterized over long periods of time by using sleeping postures only.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Eingebettete Sensorsysteme
Hinterlegungsdatum: 17 Jan 2012 09:54
Letzte Änderung: 05 Aug 2021 09:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen