Borazio, Marko ; Laerhoven, Kristof Van (2011)
Predicting Sleeping Behaviors in Long-Term Studies with Wrist-Worn Sensor Data.
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
This paper conducts a preliminary study in which sleeping behavior is predicted using long-term activity data from a wearable sensor. For this purpose, two scenarios are scrutinized: The first predicts sleeping behavior using a day-of-the-week model. In a second scenario typical sleep patterns for either working or weekend days are modeled. In a continuous experiment over 141 days (6 months), sleeping behavior is characterized by four main features: the amount of motion detected by the sensor during sleep, the duration of sleep, and the falling asleep and waking up times. Prediction of these values can be used in behavioral sleep analysis and beyond, as a component in healthcare systems.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2011 |
Autor(en): | Borazio, Marko ; Laerhoven, Kristof Van |
Art des Eintrags: | Bibliographie |
Titel: | Predicting Sleeping Behaviors in Long-Term Studies with Wrist-Worn Sensor Data |
Sprache: | Englisch |
Publikationsjahr: | 2011 |
Ort: | Amsterdam |
Verlag: | Springer Verlag |
Band einer Reihe: | LNCS 7 |
URL / URN: | http://www.springerlink.com/content/h955508761143442/ |
Kurzbeschreibung (Abstract): | This paper conducts a preliminary study in which sleeping behavior is predicted using long-term activity data from a wearable sensor. For this purpose, two scenarios are scrutinized: The first predicts sleeping behavior using a day-of-the-week model. In a second scenario typical sleep patterns for either working or weekend days are modeled. In a continuous experiment over 141 days (6 months), sleeping behavior is characterized by four main features: the amount of motion detected by the sensor during sleep, the duration of sleep, and the falling asleep and waking up times. Prediction of these values can be used in behavioral sleep analysis and beyond, as a component in healthcare systems. |
Zusätzliche Informationen: | Embedded Sensing Systems |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik |
Hinterlegungsdatum: | 17 Jan 2012 09:56 |
Letzte Änderung: | 05 Aug 2021 09:41 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |